Bài toán cực trị có tham số đối với một số hàm số cơ bản

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ liên tục trên $R$ và có đồ thị như hình vẽ bên, một hàm số $g\left( x \right)$ xác định theo $f\left( x \right)$ có đạo hàm $g'\left( x \right) = f\left( x \right) + m$. Tìm tất cả các giá trị thực của tham số $m$ để hàm số $g\left( x \right)$ có duy nhất một cực trị.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Hàm số $g\left( x \right)$ có duy nhất một cực trị $ \Leftrightarrow $ pt $g'\left( x \right) = 0$ có đúng một nghiệm \(x_0\) thỏa mãn \(g'(x)\) đổi dấu qua nghiệm đó.

Theo đề bài ta có: $g'\left( x \right) = f\left( x \right) + m$ $ \Rightarrow g'\left( x \right) = 0 \Leftrightarrow f\left( x\right) + m = 0 \Leftrightarrow f\left( x \right) =  - m$ $ \Rightarrow $ Số nghiệm của pt $g'\left( x \right) = 0$ là số giao điểm của đồ thị hàm số $y = f\left( x \right)$ và đường thẳng $y =  - m$.

Quan sát đồ thị ta thấy đường thẳng $y =  - m$ cắt đồ thị hàm số $y = f\left( x \right)$ tại một điểm duy nhất

$ \Leftrightarrow \left[ \begin{gathered}  - m < 0 \hfill \\ - m > 4 \hfill \\ \end{gathered}  \right. \Leftrightarrow \left[ \begin{gathered}m > 0 \hfill \\  m <  - 4 \hfill \\ \end{gathered}  \right.$.

Ngoài ra, với \(m=0\) hoặc \(m=-4\) thì đồ thị hàm số \(y=f(x)\) có hai điểm chung với đường thẳng \(y=m\) nhưng một điểm là điểm tiếp xúc nên phương trình \(g'(x)=0\) có hai nghiệm phân biệt, trong đó có một nghiệm kép và một nghiệm đơn.

Nên trong trường hợp này, hàm số \(y=g(x)\) vẫn chỉ có một cực trị.

Vậy \(m \ge 0 \) hoặc \(  m \le  - 4 \).

Câu 22 Trắc nghiệm

Cho hàm số $y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6$ với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số có hai điểm cực trị ${x_1},{\rm{ }}{x_2}$ thỏa mãn ${x_1} <  - 1 < {x_2}$.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có $y' = 3{x^2} + 12x + 3\left( {m + 2} \right) = 3\left[ {{x^2} + 4x + \left( {m + 2} \right)} \right].$

Yêu cầu bài toán $ \Leftrightarrow y' = 0$ có hai nghiệm phân biệt ${x_1},{\rm{ }}{x_2}$ thỏa mãn ${x_1} <  - 1 < {x_2}$

- Hàm số có hai điểm cực trị \( \Leftrightarrow \Delta ' = 4 - \left( {m + 2} \right) = 2 - m > 0 \Leftrightarrow m < 2\)

Hai điểm cực trị thỏa mãn \({x_1} <  - 1 < {x_2}\) \( \Leftrightarrow \) phương trình \(y' = 0\) có hai nghiệm phân biệt\( \Leftrightarrow y'\left( { - 1} \right) < 0 \Leftrightarrow m < 1.\)

Câu 23 Trắc nghiệm

Cho hàm số $y = 2{x^3} + m{x^2} - 12x - 13$ với \(m\) là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có $y' = 6{x^2} + 2mx - 12.$

Do $\Delta ' = {m^2} + 72 > 0,{\rm{ }}\forall m \in \mathbb{R}$ nên hàm số luôn có hai điểm cực trị \({x_1},{\rm{ }}{x_2}\) với \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(y' = 0\).

Theo định lí Viet, ta có ${x_1} + {x_2} =  - \dfrac{m}{3}.$

Gọi $A\left( {{x_1};{y_1}} \right)$ và $B\left( {{x_2};{y_2}} \right)$ là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán \( \Leftrightarrow \left| {{x_1}} \right| = \left| {{x_2}} \right| \Leftrightarrow {x_1} =  - {x_2}\) (do \({x_1} \ne {x_2}\))

$ \Leftrightarrow {x_1} + {x_2} = 0 \Leftrightarrow  - \dfrac{m}{3} = 0 \Leftrightarrow m = 0.$

Câu 24 Trắc nghiệm

Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^2} - 2\) với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số có hai điểm cực trị \(A,{\rm{ }}B\) sao cho \(I\left( {1;0} \right)\) là trung điểm của đoạn thẳng \(AB\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(y' = 3{x^2} - 6mx = 3x\left( {x - 2m} \right);{\rm{ }}y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2m\end{array} \right..\)

Đề đồ thị hàm số có hai điểm cực trị \( \Leftrightarrow m \ne 0\).

Khi đó tọa độ hai điểm cực trị là \(A\left( {0;4{m^2} - 2} \right)\) và \(B\left( {2m;4{m^2} - 4{m^3} - 2} \right)\).

Do \(I\left( {1;0} \right)\) là trung điểm của \(AB\) nên \(\left\{ \begin{array}{l}{x_A} + {x_B} = 2{x_I}\\{y_A} + {y_B} = 2{y_I}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}0 + 2m = 2\\\left( {4{m^2} - 2} \right) + \left( {4{m^2} - 4{m^3} - 2} \right) = 0\end{array} \right. \Leftrightarrow m = 1:\) thỏa mãn.

Câu 25 Trắc nghiệm

Gọi \({m_0}\)  là giá trị của \(m\) thỏa mãn đồ thị hàm số \(y = \dfrac{{{x^2} + mx - 5}}{{{x^2} + 1}}\)  có hai điểm cực trị \(A,B\)  sao cho đường thẳng \(AB\)  đi qua điểm\(I\left( {1; - 3} \right)\). Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

TXĐ: \(D = \mathbb{R}\)

Ta có \(y = \dfrac{{{x^2} + mx - 5}}{{{x^2} + 1}} = 1 + \dfrac{{mx - 6}}{{{x^2} + 1}}\)

Suy ra \(y' = \dfrac{{m\left( {{x^2} + 1} \right) - 2x\left( {mx - 6} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \dfrac{{ - m{x^2} + 12x + m}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)

Để hàm số đã cho có hai cực trị thì phương trình \(y' = 0\) có hai nghiệm phân biệt hay \( - m{x^2} + 12x + m = 0\) có hai nghiệm phân biệt. Ta có \(\Delta ' = 36 + {m^2} > 0;\,\forall m\) nên hàm số luôn có hai cực trị.

Phương trình đường thẳng \(AB\) qua hai điểm cực trị là \(y = \dfrac{{2\left( { - m} \right)x - 4.\left( { - 5} \right)}}{{ - 4}} = \dfrac{m}{2}x - 5\)

Đường thẳng \(AB\) qua điểm \(I\left( {1; - 3} \right)\) nên \( - 3 = \dfrac{m}{2}.1 - 5 \Leftrightarrow m = 4\)

Suy ra \({m_0} = 4\)

Câu 26 Trắc nghiệm

Hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) (với \(m\) là tham số thực) có nhiều nhất bao nhiêu điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) có TXĐ \(D = \mathbb{R}\).

Xét hàm số \(g\left( x \right) = \dfrac{x}{{{x^2} + 1}} - m\) ta có:

\(g'\left( x \right) = \dfrac{{{x^2} + 1 - x.2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \dfrac{{ - {x^2} + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0 \Leftrightarrow x =  \pm 1\).

\( \Rightarrow \) Hàm số \(y = g\left( x \right)\) có 2 điểm cực trị.

Xét phương trình hoành độ giao điểm \(\dfrac{x}{{{x^2} + 1}} - m = 0 \Leftrightarrow \dfrac{{x - m\left( {{x^2} + 1} \right)}}{{{x^2} + 1}} = 0 \Leftrightarrow  - m{x^2} + x - m = 0\), phương trình có \(\Delta  = 1 - 4{m^2}\) chưa xác định dấu nên có tối đa 2 nghiệm.

Vậy hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) có tối đa \(2 + 2 = 4\) cực trị.

Câu 27 Trắc nghiệm

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{{x^2} + mx + 2m}}{{x + 1}}\) có hai điểm cực trị \(A,\,\,B\) và tam giác \(OAB\) vuông tại O. Tổng tất cả các phần tử của \(S\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

ĐKXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có: \(y = \dfrac{{{x^2} + mx + 2m}}{{x + 1}} = x + m - 1 + \dfrac{{m + 1}}{{x + 1}}\).

\( \Rightarrow y' = 1 - \dfrac{{m + 1}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{{{x^2} + 2x - m}}{{{{\left( {x + 1} \right)}^2}}}\)

Để hàm số đã cho có 2 cực trị thì phương trình \(y' = 0\) phải có 2 nghiệm phân biệt khác \( - 1\).

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 1 + m > 0\\1 - 2 - m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  - 1\\m \ne  - 1\end{array} \right. \Leftrightarrow m >  - 1.\)

Khi đó, giả sử \({x_1},\,\,{x_2}\) là nghiệm phân biệt của phương trình \(y' = 0\), áp dụng định lí Vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}.{x_2} =  - m\end{array} \right..\)

Đặt \(A\left( {{x_1};{x_1} + m - 1 + \dfrac{{m + 1}}{{{x_1} + 1}}} \right),\,\,B\left( {{x_2};{x_2} + m - 1 + \dfrac{{m + 1}}{{{x_2} + 1}}} \right)\) là hai điểm cực trị của hàm số.

Để tam giác \(OAB\) vuông tại \(O\) thì  \(\overrightarrow {OA} .\overrightarrow {OB}  = 0\).

\(\begin{array}{l} \Leftrightarrow {x_1}.{x_2} + \left( {{x_1} + m - 1 + \dfrac{{m + 1}}{{{x_1} + 1}}} \right)\left( {{x_2} + m - 1 + \dfrac{{m + 1}}{{{x_2} + 1}}} \right) = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\left( {\dfrac{{{x_1}}}{{{x_2} + 1}} + \dfrac{{{x_2}}}{{{x_1} + 1}}} \right)\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\left( {\dfrac{1}{{{x_1} + 1}} + \dfrac{1}{{{x_2} + 1}}} \right) + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\dfrac{{x_1^2 + x_2^2 + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\dfrac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\dfrac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} = 0\\ \Leftrightarrow  - 2m - 2\left( {m - 1} \right) + \left( {m + 1} \right).\dfrac{{2 + 2m}}{{ - m - 1}} + {\left( {m - 1} \right)^2} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{ - m - 1}} = 0\\ \Leftrightarrow  - 2m - 2m + 2 - 2 - 2m + {m^2} - 2m + 1 - m - 1 = 0\\ \Leftrightarrow {m^2} - 9m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 9\end{array} \right.\,\,\left( {tm} \right)\end{array}\)

\( \Rightarrow S = \left\{ {0;9} \right\}\).

Vậy tổng tất cả các phần tử của S là \(9\).

Câu 28 Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\) có hai điểm cực trị nằm về hai phía của trục hoành.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Để đồ thị hàm số \(y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\) có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình \(m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\,\,\left( * \right)\) phải có 3 nghiệm phân biệt.

Ta có:

\(\begin{array}{l}\,\,\,\,\,m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left[ {m{x^2} - \left( {m - 1} \right)x + m + 1} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\m{x^2} - \left( {m - 1} \right)x + m + 1 = 0\,\,\,\left( {**} \right)\end{array} \right.\end{array}\)

Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m.1 - \left( {m - 1} \right).1 + m + 1 \ne 0\\\Delta  = {\left( {m - 1} \right)^2} - 4m\left( {m + 1} \right) > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m - m + 1 + m + 1 \ne 0\\{m^2} - 2m + 1 - 4{m^2} - 4m > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 2\\ - 3{m^2} - 6m + 1 > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 2\\\dfrac{{ - 3 - 2\sqrt 3 }}{3} < m < \dfrac{{ - 3 + 2\sqrt 3 }}{3}\end{array} \right.\end{array}\)

Mà \(m \in \mathbb{Z}\) \( \Rightarrow m =  - 1\).

Vậy có 1 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Câu 29 Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét hàm số \(f\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2}\) ta có

\(\begin{array}{l}f'\left( x \right) = 12{x^3} - 12{x^2} - 24x\\f'\left( x \right) = 0 \Leftrightarrow 12{x^3} - 12{x^2} - 24x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 2\end{array} \right.\end{array}\)

BBT:

Ta có đồ thị \(y = f\left( x \right)\,\,\left( C \right)\) như sau:

Để \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị thì:

TH1: \(\left( C \right)\) cắt đường thẳng \(y =  - m\) tại 2 điểm phân biệt khác cực trị

\( \Leftrightarrow \left[ \begin{array}{l} - m > 0\\ - 32 <  - m <  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 0\\5 < m < 32\end{array} \right.\)

Mà \(m \in {\mathbb{Z}^ + }\, \Rightarrow m \in \left\{ {6;7;...;31} \right\}\) : 26 giá trị.

TH2: \(\left( C \right)\) cắt đường thẳng \(y =  - m\) tại 3 điểm phân biệt, trong đó có 1 cực trị

\( \Leftrightarrow \left[ \begin{array}{l} - m = 0\\ - m =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\,(L)\\m = 5\,(TM)\end{array} \right.\)

Vậy, có tất cả 27 giá trị của m thỏa mãn.

Câu 30 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x + 1\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {\left| x \right|} \right)\) có đúng 3 điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bước 1:

Số điểm cực trị của hàm số \(y = f\left( {\left| x \right|} \right)\) là \(2m + 1\) trong đó \(m\) là số điềm cực trị dương của hàm số \(y = f\left( x \right)\).

Do đó để hàm số \(y = f\left( {\left| x \right|} \right)\) có đúng 3 điểm cực trị thì \(m = 1 \Rightarrow \) hàm số \(y = f\left( x \right)\) phải có 1 điểm cực trị dương (*).

Bước 2:

Ta có: \(f'\left( x \right) = {x^2} + 2mx + {m^2} - 4\).

Xét \(f'\left( x \right) = 0\) có \(\Delta ' = {m^2} - {m^2} + 4 > 0\,\,\forall m\) nên \(f'\left( x \right) = 0\) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} =  - m + 2\\{x_2} =  - m - 2\end{array} \right.\).

Bước 3:

\(\left( * \right) \Rightarrow  - m - 2 \le 0 <  - m + 2 \Leftrightarrow  - 2 \le m < 2\).

Mà \(m \in \mathbb{Z}\) \( \Rightarrow m \in \left\{ { - 2; - 1;0;1} \right\}\).

Vậy có 4 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Câu 31 Tự luận

Gọi k là số giá trị nguyên của tham số \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} - {x^2} \)\(+ \left( {{m^2} - 8m + 16} \right)x - 31\) có cực trị. Tìm k.

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Ta có: \(y' = {x^2} - 2x + {m^2} - 8m + 16\).

Để hàm số đã cho có cực trị thì phương trình \(y' = 0\) phải có 2 nghiệm phân biệt.

\(\begin{array}{l} \Rightarrow \Delta ' = 1 - {m^2} + 8m - 16 > 0\\ \Leftrightarrow  - {m^2} + 8m - 15 > 0\\ \Leftrightarrow 3 < m < 5\end{array}\)

Mà \(m \in \mathbb{Z} \Rightarrow m = 4\).

Vậy có 1 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

$=>k=1$