Phương pháp quy nạp toán học và dãy số

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

Câu 21 Trắc nghiệm

Chọn mệnh đề đúng: Với mọi \(n \in {N^*}\) thì:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Với $n = 1$ ta có \({13^1} - 1 = 12 \vdots 12\), ta sử dụng phương pháp quy nạp toán học để chứng minh \({13^n} - 1\) chia hết cho $12$ với mọi \(n \in {N^*}\).

Giả sử khẳng định trên đúng đến $n = k (k \ge 1)$, tức là \(\left( {{{13}^k} - 1} \right) \vdots 12\) ta chứng minh đúng đến $n = k + 1$, tức là \({13^{k + 1}} - 1\) cũng chia hết cho \(12\)

Ta có:

\({13^{k + 1}} - 1 = {13.13^k} - 1 \)\(= {13.13^k} - 13 + 12 \) \(= 13\left( {{{13}^k} - 1} \right) + 12\)

Theo giả thiết quy nạp ta có: \(\left( {{{13}^k} - 1} \right) \vdots 12\) nên \(13\left( {{{13}^k} - 1} \right) + 12 \vdots 12 \Rightarrow \left( {{{13}^{k + 1}} - 1} \right) \vdots 12\)

Vậy \(\left( {{{13}^n} - 1} \right) \vdots 12,\forall n \in {N^*}\).

Câu 22 Trắc nghiệm

Cho dãy số \(\left( {{u_n}} \right)\) , với \({u_n} = \dfrac{{3n - 1}}{{3n + 7}}\). Mệnh đề nào dưới đây đúng ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có :

\({u_{n + 1}} - {u_n} = \dfrac{{3\left( {n + 1} \right) - 1}}{{3\left( {n + 1} \right) + 7}} - \dfrac{{3n - 1}}{{3n + 7}} \) \(= \dfrac{{3n + 2}}{{3n + 10}} - \dfrac{{3n - 1}}{{3n + 7}}\) \( = \dfrac{{9{n^2} + 27n + 14 - 9{n^2} - 27n + 10}}{{\left( {3n + 10} \right)\left( {3n + 7} \right)}} \) \(= \dfrac{{24}}{{\left( {3n + 10} \right)\left( {3n + 7} \right)}} > 0\)

Do đó \(\left( {{u_n}} \right)\) là dãy số tăng.

Ta có \({u_n} = \dfrac{{3n - 1}}{{3n + 7}} = 1 - \dfrac{8}{{3n + 7}} < 1\,\,\forall n \ge 1\) nên dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi $1$.

\({u_1} = \dfrac{1}{5} \Rightarrow \left( {{u_n}} \right)\)  bị chặn dưới bởi \(\dfrac{1}{5}\) .

Câu 23 Trắc nghiệm

Trong các dãy số sau đây, dãy số nào bị chặn trên ?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Dãy số \(\left( {{a_n}} \right)\) là dãy số tăng và bị chặn dưới bới \({a_1} = 4\)

Dãy số \(\left( {{b_n}} \right)\) có \(\dfrac{1}{{n\left( {2n + 1} \right)}} < 1\,\,\forall n \in N^* \Rightarrow \left( {{b_n}} \right)\) là dãy số bị chặn trên bởi $1$.

Dãy số \(\left( {{c_n}} \right)\) là dãy số tăng và bị chặn dưới bởi \({c_1} = 12\)

Dãy số \(\left( {{d_n}} \right)\) là dãy đan dấu và \({d_{2n}} = {\left( { - 2} \right)^{2n }}= {4^n}\) lớn tùy ý khi $n$ đủ lớn và \({d_{2n + 1}} = {\left( { - 2} \right)^{2n + 1}} =  - {2.4^n}\) nhỏ tùy ý khi $n$ đủ lớn.

Do đó dãy \(\left( {{d_n}} \right)\) không bị chặn.

Câu 24 Trắc nghiệm

Với mọi số nguyên dương $n$, tổng $2 + 5 + 8 + … + (3n – 1)$ là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi ${{S}_{n}}=2+5+8+\ldots +\left( 3n-1 \right)$

Với $n = 1$ ta có: \({S_1} = 2\) , ta loại được các đáp án B, C và D.

Ta chứng minh ${{S}_{n}}=2+5+8+\ldots +\left( 3n-1 \right)=\dfrac{n\left( 3n+1 \right)}{2}\,\,\,\left( * \right)$  đúng với mọi số nguyên dương $n$ bằng phương pháp quy nạp toán học.

Giả sử (*) đúng đến $n = k (k \ge 1)$, tức là ${{S}_{k}}=2+5+8+\ldots +\left( 3k-1 \right)=\dfrac{k\left( 3k+1 \right)}{2}$

Ta cần chứng minh (*) đúng đến $n = k + 1$, tức là cần chứng minh ${{S}_{k+1}}=2+5+8+\ldots +\left( 3\left( k+1 \right)-1 \right)=\dfrac{\left( k+1 \right)\left( 3\left( k+1 \right)+1 \right)}{2}=\dfrac{\left( k+1 \right)\left( 3k+4 \right)}{2}$

Ta có: $\begin{align} & {{S}_{k+1}}=2+5+8+\ldots +\left( 3\left( k+1 \right)-1 \right)=2+5+8+\ldots +\left( 3k-1 \right)+\left( 3k+2 \right) \\  & =\dfrac{k\left( 3k+1\right)}{2}+3k+2=\dfrac{3{{k}^{2}}+k+6k+4}{2}=\dfrac{\left( k+1 \right)\left( 3k+4 \right)}{2} \\\end{align}$

Do đó (*) đúng đến $n = k + 1$ .

Vậy ${{S}_{n}}=2+5+8+\ldots +\left( 3n-1\right)=\dfrac{n\left( 3n+1 \right)}{2}$ đúng với mọi số nguyên dương $n$.

Câu 25 Trắc nghiệm

Cho dãy số \(\left( {{x_n}} \right)\) xác định bởi \({x_n} = {2.3^n} - {5.2^n},\,\,\forall n \in N^*\). Mệnh đề nào dưới đây là đúng ?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có :

\(\begin{array}{l}{x_{n + 1}} = {2.3^{n + 1}} - {5.2^{n + 1}} = {6.3^n} - {10.2^n}\\\,{x_{n + 2}} = {2.3^{n + 2}} - {5.2^{n + 2}} = {18.3^n} - {20.2^n}\end{array}\)

- Đáp án A : $5{x_{n + 1}} - 6{x_n} = 5\left( {{{6.3}^n} - {{10.2}^n}} \right) - 6\left( {{{2.3}^n} - {{5.2}^n}} \right) = {18.3^n} - {20.2^n} = {x_{n + 2}} \Rightarrow $ A đúng.

- Đáp án B: $6{x_{n + 1}} - 5{x_n} = 6\left( {{{6.3}^n} - {{10.2}^n}} \right) - 5\left( {{{2.3}^n} - {{5.2}^n}} \right) = {16.3^n} - {35.2^n} \ne {x_{n + 2}} \Rightarrow B$ sai.

- Đáp án C : ${x_{n + 2}} + 5{x_{n + 1}} - 6{x_n} = {18.3^n} - {20.2^n} + 5\left( {{{6.3}^n} - {{10.2}^n}} \right) - 6\left( {{{2.3}^n} - {{5.2}^n}} \right) = {36.3^n} - {40.2^n} \ne 0 \Rightarrow C$sai.

- Đáp án D : ${x_{n + 2}} + 6{x_{n + 1}} - 5{x_n} = {18.3^n} - {20.2^n} + 6\left( {{{6.3}^n} - {{10.2}^n}} \right) - 5\left( {{{2.3}^n} - {{5.2}^n}} \right) = {44.3^n} - {55.2^n} \ne 0 \Rightarrow D$ sai.

Câu 26 Trắc nghiệm

Cho dãy số \(\left( {{a_n}} \right)\) xác định bởi \({a_1} = 1\) và \({a_{n + 1}} =  - \dfrac{3}{2}a_n^2 + \dfrac{5}{2}{a_n} + 1,\,\,\forall n \in N^*.\) Mệnh đề nào dưới đây là đúng ?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Sáu số hạng đầu tiên của dãy số đó là

\(\begin{array}{l}{a_1} = 1\\{a_2} =  - \dfrac{3}{2} + \dfrac{5}{2} + 1 = 2\\{a_3} =  - \dfrac{3}{2}.4 + \dfrac{5}{2}.2 + 1 = 0\\{a_4} =  - \dfrac{3}{2}.0 + \dfrac{5}{2}.0 + 1 = 1\\{a_5} =  - \dfrac{3}{2} + \dfrac{5}{2} + 1 = 2\\{a_6} =  - \dfrac{3}{2}.4 + \dfrac{5}{2}.2 + 1 = 0\end{array}\)

Ta thấy cứ sau $3$ số hạng, dãy số trên sẽ bị lặp lại, do đó ta dự đoán \({a_{n + 3}} = {a_n}\,\,\forall n \ge 1\)

Chứng minh khẳng định trên bằng phương pháp quy nạp toán học :

Đẳng thức đúng với \(n = 1,{a_1} = {a_4} = 1\).

Giả sử đẳng thức đúng với $n = k$, tức là \({a_{k + 3}} = {a_k}\) , ta cần chứng minh đẳng thức đúng với $n = k + 1$, tức là cần chứng minh \({a_{k + 4}} = {a_{k + 1}}\)

Ta có :

\(\begin{array}{l}{a_{k + 4}} =  - \dfrac{3}{2}a_{k + 3}^2 + \dfrac{5}{2}{a_{k + 3}} + 1\\{a_{k + 1}} =  - \dfrac{3}{2}a_k^2 + \dfrac{5}{2}{a_k} + 1\end{array}\)

Mà \({a_{k + 3}} = {a_k} \Rightarrow {a_{k + 4}} = {a_{k + 1}}\), vậy \({a_{n + 3}} = {a_n}\,\,\forall n \ge 1\).

Tổng quát ${a_{3n + m}} = {a_m},\forall m,n \in {N^*}$

Ta lại có $2018 = 3.672 + 2$.

Từ đó ta suy ra ${a_{2018}} = {a_{3.672+2}}={a_{2}}$

Câu 27 Trắc nghiệm

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_1} = 2\) và \({u_n} = 2{u_{n + 1}} - 1,\,\,\forall n \in N^*\) , có tính chất:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\({u_n} = 2{u_{n + 1}} - 1 \Rightarrow {u_{n + 1}} = \dfrac{{{u_n} + 1}}{2}\)

Ta có: \({u_n} = \dfrac{{{u_{n - 1}} + 1}}{2} \Rightarrow {u_{n + 1}} - {u_n} = \dfrac{{{u_n} + 1}}{2} - {u_n} = \dfrac{{{u_n} + 1}}{2} - \dfrac{{{u_{n - 1}} + 1}}{2} = \dfrac{1}{2}\left( {{u_n} - {u_{n - 1}}} \right)\)

Tương tự ta có \({u_n} - {u_{n - 1}} = \dfrac{1}{2}\left( {{u_{n - 1}} - {u_{n - 2}}} \right)\)

Tiếp tục như vậy ta được:

\(\begin{array}{l}
{u_{n + 1}} - {u_n} = \frac{1}{2}\left( {{u_n} - {u_{n - 1}}} \right)\\
{u_n} - {u_{n - 1}} = \frac{1}{2}\left( {{u_{n - 1}} - {u_{n - 2}}} \right)\\
{u_{n - 1}} - {u_{n - 2}} = \frac{1}{2}\left( {{u_{n - 2}} - {u_{n - 3}}} \right)\\
...\\
{u_4} - {u_3} = \frac{1}{2}\left( {{u_3} - {u_2}} \right)\\
{u_3} - {u_2} = \frac{1}{2}\left( {{u_2} - {u_1}} \right)\\
\Rightarrow \left( {{u_{n + 1}} - {u_n}} \right)\left( {{u_n} - {u_{n - 1}}} \right)\left( {{u_{n - 1}} - {u_{n - 2}}} \right)...\left( {{u_4} - {u_3}} \right)\left( {{u_3} - {u_2}} \right)\\
= \frac{1}{2}\left( {{u_n} - {u_{n - 1}}} \right).\frac{1}{2}\left( {{u_{n - 1}} - {u_{n - 2}}} \right).\frac{1}{2}\left( {{u_{n - 2}} - {u_{n - 3}}} \right)...\frac{1}{2}\left( {{u_3} - {u_2}} \right).\frac{1}{2}\left( {{u_2} - {u_1}} \right)\\
\Rightarrow \left( {{u_{n + 1}} - {u_n}} \right) = {\left( {\frac{1}{2}} \right)^{n - 1}}.\left( {{u_2} - {u_1}} \right)\\
\Leftrightarrow {u_{n + 1}} - {u_n} = \frac{1}{{{2^{n - 1}}}}\left( {{u_2} - {u_1}} \right)
\end{array}\)

Ta có:  \({u_1} = 2{u_2} - 1 \Rightarrow {u_2} = \dfrac{3}{2} \Rightarrow {u_{n + 1}} - {u_n} = \dfrac{1}{{{2^{n - 1}}}}.\left( {\dfrac{3}{2} - 2} \right) =  - \dfrac{1}{{{2^n}}} < 0\) \( \Rightarrow \left( {{u_n}} \right)\) là dãy số giảm.

\({u_{n + 1}} - {u_n} =  - \dfrac{1}{{{2^n}}} \Leftrightarrow {u_{n + 1}} = {u_n} - \dfrac{1}{{{2^n}}}\) .

Mà \({u_n} = 2{u_{n + 1}} - 1\)\( \Rightarrow {u_n} = 2\left( {{u_n} - \dfrac{1}{{{2^n}}}} \right) - 1\)\( \Leftrightarrow {u_n} = 2{u_n} - \dfrac{1}{{{2^{n - 1}}}} - 1 \Leftrightarrow {u_n} = 1 + \dfrac{1}{{{2^{n - 1}}}} < 1 + 1 = 2\)

\( \Rightarrow 1 < {u_n} < 2\)

Do đó \(\left( {{u_n}} \right)\) là dãy số bị chặn.

Câu 28 Trắc nghiệm

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = \sqrt {2 + u_n^2} ,\,\,\forall n \ge 1\). Tổng \({S_{2018}} = u_1^2 + u_2^2 + ... + u_{2018}^2\)  là :

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\(\begin{array}{l}{u_{n + 1}} = \sqrt {2 + u_n^2}  \Leftrightarrow u_{n + 1}^2 = u_n^2 + 2 = u_{n - 1}^2 + 2 + 2 = ... = u_1^2 + 2n = 1 + 2n\\ \Leftrightarrow u_n^2 = 1 + 2\left( {n - 1} \right) = 2n - 1\end{array}\)

Khi đó

\(\begin{array}{l}{S_{2018}} = \sum\limits_{n = 1}^{2018} {\left( {2n - 1} \right)}  = 2\sum\limits_{n = 1}^{2018} n  - \sum\limits_{n = 1}^{2018} 1  = 2\left( {1 + 2 + ... + 2018} \right) - 2018\\ = 2\dfrac{{2018\left( {2018 + 1} \right)}}{2} - 2018 = {2018^2} + 2018 - 2018 = {2018^2}\end{array}\)

Câu 29 Trắc nghiệm

Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = \dfrac{1}{2};{u_{n + 1}} = \dfrac{{{u_n}}}{{2\left( {n + 1} \right){u_n} + 1}},\,\,n \ge 1\) . \({S_n} = {u_1} + {u_2} + ... + {u_n} < \dfrac{{2017}}{{2018}}\) khi $n$ có giá trị dương lớn nhất là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Dễ dàng chỉ ra được \({u_n} \ge 0\,\,\forall n \ge 1\)

Từ hệ thức truy hồi của dãy số ta có

\(\begin{array}{l}\dfrac{1}{{{u_{n + 1}}}} = \dfrac{{2\left( {n + 1} \right){u_n} + 1}}{{{u_n}}} = \dfrac{1}{{{u_n}}} + 2n + 2\\ \Rightarrow \dfrac{1}{{{u_n}}} = \dfrac{1}{{{u_{n - 1}}}} + 2\left( {n - 1} \right) + 2 = \dfrac{1}{{{u_{n - 2}}}} + 2\left( {n - 1} \right) + 2 + 2\left( {n - 2} \right) + 2 = ... = \dfrac{1}{{{u_1}}} + 2\left( {1 + 2 + ... + n - 1} \right) + 2\left( {n - 1} \right)\\ = 2 + 2\dfrac{{n\left( {n - 1} \right)}}{2} + 2n - 2 = {n^2} + n\\ \Rightarrow {u_n} = \dfrac{1}{{{n^2} + n}} = \dfrac{1}{{n\left( {n + 1} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\\ \Rightarrow {S_n} = \dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{n} - \dfrac{1}{{n + 1}} = 1 - \dfrac{1}{{n + 1}} = \dfrac{n}{{n + 1}} < \dfrac{{2017}}{{2018}}\\ \Rightarrow 2018n < 2017n + 2017 \Leftrightarrow n < 2017.\end{array}\)

Suy ra số nguyên dương lớn nhất thỏa mãn yêu cầu bài toán là $n = 2016$.