Hàm số mũ

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

Câu 21 Trắc nghiệm

Tính đạo hàm của hàm số \(y = {6^x}\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\(y = {6^x} \Rightarrow \)\(y' = {6^x}\ln 6.\)

Câu 22 Trắc nghiệm

Cho hàm số \(y = {e^{2x}} - x\). Chọn khẳng định đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 2{e^{2x}} - 1 = 0 \Leftrightarrow {e^{2x}} = \dfrac{1}{2}\) \( \Leftrightarrow 2x = \ln \dfrac{1}{2} =  - \ln 2 \Leftrightarrow x =  - \dfrac{1}{2}\ln 2 =  - \ln \sqrt 2 \).

BBT:

Dựa vào BBT ta thấy hàm số đồng biến trên \(\left( { - \ln \sqrt 2 ; + \infty } \right)\).

Câu 23 Trắc nghiệm

Tìm tất cả các giá trị thực của \(m\) để hàm số \(y = {2^{{x^3} - {x^2} + m\,x + 1}}\) đồng biến trên \(\left( {1;2} \right)\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: \(y = {2^{{x^3} - {x^2} + mx + 1}}\) \( \Rightarrow y' = \left( {3{x^2} - 2x + m} \right){2^{{x^3} - {x^2} + mx + 1}}\)

\( \Rightarrow \) Hàm số đã cho đồng biến trên \(\left( {1;\,\,2} \right) \Leftrightarrow y' \ge 0\,\,\forall x \in \left( {1;\,\,2} \right)\)

\(\begin{array}{l} \Leftrightarrow \left( {3{x^2} - 2x + m} \right){2^{{x^3} - {x^2} + mx + 1}} \ge 0\,\,\,\forall x \in \left( {1;\,\,2} \right)\\ \Leftrightarrow 3{x^2} - 2x + m \ge \,0\,\,\,\forall x \in \left( {1;\,\,2} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\Delta ' \le 0\\\left\{ \begin{array}{l}\Delta ' \ge 0\\\left[ \begin{array}{l}{x_1} < {x_2} \le 1\\2 \le {x_1} < {x_2}\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\Delta ' \le 0\\\left\{ \begin{array}{l}\Delta ' \ge 0\\\left[ \begin{array}{l}\left\{ \begin{array}{l}{x_1} + {x_2} < 2\\\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 0\end{array} \right.\\\left\{ \begin{array}{l}{x_1} + {x_2} > 4\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\end{array} \right.\end{array} \right.\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\Delta ' \le 0\\\left\{ \begin{array}{l}\Delta ' \ge 0\\\left[ \begin{array}{l}\left\{ \begin{array}{l}{x_1} + {x_2} < 2\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \ge 0\end{array} \right.\\\left\{ \begin{array}{l}{x_1} + {x_2} > 4\\{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 \ge 0\end{array} \right.\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 - 3m \le 0\\\left\{ \begin{array}{l}1 - 3m \ge 0\\\left[ \begin{array}{l}\frac{2}{3} < 2\\\frac{m}{3} - \frac{2}{3} + 1 \ge 0\end{array} \right.\\\left[ \begin{array}{l}\frac{x}{3} > 4\,\,\,\left( {ktm} \right)\\\frac{m}{3} - \frac{4}{3} + 4 \ge 0\end{array} \right.\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m \ge \frac{1}{3}\\\left\{ \begin{array}{l}m \le \frac{1}{3}\\\frac{m}{3} \ge  - \frac{1}{3}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \ge \frac{1}{3}\\\left\{ \begin{array}{l}m \le \frac{1}{3}\\m \ge  - 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \ge \frac{1}{3}\\ - 1 \le m \le \frac{1}{3}\end{array} \right. \Leftrightarrow m \ge  - 1.\end{array}\)

Câu 24 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \dfrac{1}{{3 + {2^x}}} + \dfrac{1}{{3 + {2^{ - x}}}}\). Trong các khẳng định, có bao nhiêu khẳng định đúng?

1) \(f'\left( x \right) \ne 0,\forall x \in R\)

2) \(f\left( 1 \right) + f\left( 2 \right) + ... + f\left( {2017} \right) = 2017\)

3) \(f\left( {{x^2}} \right) = \dfrac{1}{{3 + {4^x}}} + \dfrac{1}{{3 + {4^{ - x}}}}\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:

\(f'\left( x \right) = \dfrac{{ - {2^x}\ln 2}}{{{{\left( {3 + {2^x}} \right)}^2}}} + \dfrac{{{2^{ - x}}\ln 2}}{{{{\left( {3 + {2^{ - x}}} \right)}^2}}} \Rightarrow f'\left( 0 \right) = 0\) nên khẳng định (1) sai.

\(f\left( x \right) = \dfrac{{{2^x} + {2^{ - x}} + 6}}{{\left( {3 + {2^x}} \right)\left( {3 + {2^{ - x}}} \right)}} = \dfrac{{{2^x} + {2^{ - x}} + 6}}{{3\left( {{2^x} + {2^{ - x}}} \right) + 10}}\)

Đặt \(t = {2^x} + {2^{ - x}} \ge 2\sqrt {{2^x}{{.2}^{ - x}}}  = 2\) thì \(\dfrac{{{2^x} + {2^{ - x}} + 6}}{{3\left( {{3^x} + {2^{ - x}}} \right) + 10}} = \dfrac{{t + 6}}{{3t + 10}}\)

Xét \(g\left( t \right) = \dfrac{{t + 6}}{{3t + 10}},g'\left( t \right) =  - \dfrac{8}{{{{\left( {3t + 10} \right)}^2}}} < 0\) nên hàm số nghịch biến trên \(\left[ {2; + \infty } \right)\).

\( \Rightarrow g\left( t \right) \le g\left( 2 \right) = \dfrac{{2 + 6}}{{3.2 + 10}} = \dfrac{1}{2} < 1\) hay \(f\left( x \right) < 1,\forall x\).

Suy ra \(f\left( 1 \right) < 1,f\left( 2 \right) < 1,...,f\left( {2017} \right) < 1\).

\( \Rightarrow f\left( 1 \right) + f\left( 2 \right) + ... + f\left( {2017} \right) < 2017\) nên (2) sai.

\(f\left( {{x^2}} \right) = \dfrac{1}{{3 + {2^{{x^2}}}}} + \dfrac{1}{{3 + {2^{ - {x^2}}}}} \ne \dfrac{1}{{3 + {4^x}}} + \dfrac{1}{{3 + {4^{ - x}}}}\) (chẳng hạn \(x = 1\)) nên (3) sai.

Do đó không có khẳng định nào đúng.

Câu 25 Trắc nghiệm

Cho hàm số \(f(x) = {(3 - \sqrt 2 )^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}}\) . Xét các khẳng định sau:

Khẳng định 1: \(f(x) > 0 \Leftrightarrow {x^3} + {x^2} > 0\)

Khẳng định 2: \(f(x) > 0 \Leftrightarrow x >  - 1\).

Khẳng định 3: \(f(x) < 3 - \sqrt 2  \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\dfrac{{3 + \sqrt 2 }}{7}} \right)^{{x^2} + 1}}\)

Khẳng định 4:\(f(x) < 3 + \sqrt 2  \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} + 1}} < {(3 - \sqrt 2 )^{1 - {x^2}}} + 7\)

Trong các khẳng định trên, có bao nhiêu khẳng định đúng?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Cơ số $3 - \sqrt 2  > 1$

Ta có $f\left( x \right) > 0 \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} > 0 \Leftrightarrow {x^3} >  - {x^2} \Leftrightarrow {x^3} + {x^2} > 0$ suy ra khẳng định 1 đúng.

Ta có $f\left( x \right) > 0 \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} > 0 \Leftrightarrow {x^3} >  - {x^2} \Leftrightarrow {x^3} + {x^2} > 0 $

$\Leftrightarrow {x^2}\left( {x + 1} \right) > 0 \Leftrightarrow \left\{ \begin{gathered}
x > - 1 \hfill \\
x \ne 0 \hfill \\
\end{gathered} \right.$ suy ra khẳng định 2 sai.

Ta có

$\begin{array}{l}f\left( x \right) < 3 - \sqrt 2  \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} < 3 - \sqrt 2  \\ \Leftrightarrow \dfrac{{{{\left( {3 - \sqrt 2 } \right)}^{{x^3}}}}}{{3 - \sqrt 2 }} - \dfrac{{{{\left( {3 - \sqrt 2 } \right)}^{ - {x^2}}}}}{{3 - \sqrt 2 }} < 1 \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3} - 1}} < 1 + {\left( {3 - \sqrt 2 } \right)^{ - {x^2} - 1}} \\ \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3} - 1}} < 1 + {\left( {\dfrac{1}{{3 - \sqrt 2 }}} \right)^{{x^2} + 1}}  \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3} - 1}} < 1 + {\left( {\dfrac{{3 + \sqrt 2 }}{7}} \right)^{{x^2} + 1}}\end{array}$

suy ra khẳng định 3 đúng.

Ta có

$\begin{array}{l}f\left( x \right) < 3 + \sqrt 2  \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} < 3 + \sqrt 2 \\ \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}}\left( {3 - \sqrt 2 } \right) - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}}\left( {3 - \sqrt 2 } \right) < \left( {3 + \sqrt 2 } \right)\left( {3 - \sqrt 2 } \right)\\ \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3} + 1}} < {\left( {3 - \sqrt 2 } \right)^{1 - {x^2}}} + 7\end{array}$

Suy ra khẳng định 4 đúng.

Vậy có $3$ khẳng định đúng.

Câu 26 Trắc nghiệm

Cho hai số thực dương $x, y$ thỏa mãn \({2^x} + {2^y} = 4\). Tìm giá trị lớn nhất \({P_{\max }}\) của biểu thức\(P = (2{x^2} + y)(2{y^2} + x) + 9xy\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:

\(\begin{array}{l}4 = {2^x} + {2^y} \ge 2\sqrt {{2^x}{{.2}^y}}  \Rightarrow 2 \ge \sqrt {{2^x}{2^y}} \\ \Rightarrow 4 \ge {2^{x + y}} \Rightarrow 0 < x + y \le 2\\ \Rightarrow {\left( {x + y} \right)^2} \le 4\end{array}\)

Lại có \(x + y \ge 2\sqrt {xy}  \Rightarrow xy \le 1\)

\(\begin{array}{l} \Rightarrow P = 4{x^2}{y^2} + 2{x^3} + 2{y^3} + 10xy\\ = 4{\left( {xy} \right)^2} + 10xy + 2\left( {{x^3} + {y^3}} \right)\\ = 4{\left( {xy} \right)^2} + 10xy \\+ 2.\left( {x + y} \right).\left[ {{{\left( {x + y} \right)}^2} - 3xy} \right]\\ \Rightarrow P \le 4{\left( {xy} \right)^2} + 10xy + 2.2.\left( {4 - 3xy} \right)\\ \Rightarrow P \le 4{\left( {xy} \right)^2} - 2xy + 16\end{array}\)

Đặt \(xy = t \Rightarrow 0 < t \le 1\)

Xét hàm số \(f\left( t \right) = 4{t^2} - 2t + 16\) trên \(\left( {0;1} \right]\).

\( \Rightarrow f\left( t \right) \le \max \left\{ {f\left( 1 \right),f\left( 0 \right)} \right\} = 18\).

Dấu “=” xảy ra khi và chỉ khi \(x = y = 1\).

Vậy \({P_{\max }} = 18 \Leftrightarrow x = y = 1\).

Câu 27 Trắc nghiệm

Gọi $I(t)$ là số ca bị nhiễm bệnh Covid-19 ở quốc gia $\mathrm{X}$ sau $t$ ngày khảo sát. Khi đó ta có công thức $I(t)=A . e^{r_{0}(t-1)}$ với $A$ là số ca bị nhiễm trong ngày khảo sát đầu tiên, $r_{0}$ là hệ số lây nhiễm. Biết rằng ngày đầu tiên khảo sát có 500 ca bị nhiễm bệnh và ngày thứ 10 khảo sát có 1000 ca bị nhiễm bệnh. Hỏi ngày thứ 20 số ca nhiễm bệnh gần nhất với số nào dưới đây, biết rằng trong suốt quá trình khảo sát hệ số lây nhiễm là không đổi?

Bạn đã chọn sai | Đáp án đúng:

2160

Bạn đã chọn đúng | Đáp án đúng:

2160

Bạn chưa làm câu này | Đáp án đúng:

2160

Bước 1: Tính $r_0$

Theo giả thiết ta có: I(1)=A=500

Ngày thứ 10 có 1000 ca nhiễm nên

\(\begin{array}{l}I\left( {10} \right) = A.{e^{9{r_0}}} \Leftrightarrow 1000 = 500.{e^{9{r_0}}}\\ \Leftrightarrow {e^{9{r_0}}} = 2 \Leftrightarrow 9{r_0} = \ln 2\\ \Leftrightarrow {r_0} = \dfrac{{\ln 2}}{9}\end{array}\)

Bước 2: Tính I(20)

Áp dụng công thức thì ta được ngày thứ 20 số ca nhiễm bệnh là:

\(I\left( {20} \right) = 500.{e^{\frac{{19\ln 2}}{9}}} \approx 2160\)