Phương trình mũ

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

Câu 21 Trắc nghiệm

Trong các phương trình sau đây, phương trình nào có nghiệm?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ý A: Điều kiện $x > 0$. Có ${x^{\frac{2}{3}}} + 5 > 0,\forall x > 0$ nên phương trình vô nghiệm

Ý B: Điều kiện $x > 4$. Có ${\left( {3x} \right)^{\frac{1}{3}}} + {\left( {x - 4} \right)^{\frac{2}{3}}} > 0,\forall x > 4$ nên phương trình vô nghiệm

Ý C: Điều kiện $x \ge 2$. Có $\sqrt {4x - 8}  + 2 > 0,\forall x \ge 2$ nên phương trình vô nghiệm

Ý D: Điều kiện $x > 0$. Có $2{x^{\frac{1}{2}}} - 3 = 0 \Leftrightarrow {x^{\frac{1}{2}}} = \dfrac{3}{2} \Leftrightarrow x = {\log _{\frac{1}{2}}}\dfrac{3}{2}$ (thỏa mãn)

Câu 22 Trắc nghiệm

Cho \({4^x} + {4^{ - x}} = 7\). Khi đó biểu thức \(P = \dfrac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \dfrac{a}{b}\) với \(\dfrac{a}{b}\) tối giản và \(a,b \in \mathbb{Z}\). Tích \(a.b\) có giá trị bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\(\begin{array}{l}{4^x} + {4^{ - x}} = 7\\{4^x} + {4^{ - x}} + 2 = 9\\ \Leftrightarrow {\left( {{2^x}} \right)^2} + {\left( {{2^{ - x}}} \right)^2} + {2.2^x}{.2^{ - x}} = 9\\ \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} = 9\\ \Leftrightarrow {2^x} + {2^{ - x}} = 3\end{array}\)

(do \({2^x} + {2^{ - x}} > 0\))

Vậy

\(\begin{array}{l}P = \dfrac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}}\\\,\,\,\, = \dfrac{{5 - \left( {{2^x} + {2^{ - x}}} \right)}}{{8 + 4\left( {{2^x} + {2^{ - x}}} \right)}}\\\,\,\,\, = \dfrac{{5 - 3}}{{8 + 4.3}} = \dfrac{1}{{10}}\\ \Rightarrow a = 1,b = 10 \Rightarrow a.b = 1.10 = 10\end{array}\)

Câu 23 Trắc nghiệm

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để phương trình \({16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\) có nghiệm dương?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có \({16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\)(1)

\( \Leftrightarrow {\left( {\frac{4}{3}} \right)^{2x}} - 2.{\left( {\frac{4}{3}} \right)^x} + m - 2 = 0\); chia cả hai vế cho \({9^x}\).

Đặt \({\left( {\frac{4}{3}} \right)^x} = t \Rightarrow x = {\log _{\frac{4}{3}}}t > 0 \Leftrightarrow t > 1\)

Khi đó ta có phương trình \({t^2} - 2t + m - 2 = 0\)(*)

Để phương trình (1) có nghiệm dương thì phương trình (*) có nghiệm lớn hơn 1.

(*) có nghiệm \( \Leftrightarrow \Delta ' = 1 - m + 2 \ge 0 \Leftrightarrow 3 - m \ge 0 \Leftrightarrow m \le 3\)

Với \(m \le 3\) thì \(\left( * \right)\) có nghiệm \({t_1} = 1 - \sqrt {3 - m} ,{t_2} = 1 + \sqrt {3 - m} \)

Để (*) có nghiệm lớn hơn 1 thì

\(1 + \sqrt {3 - m}  > 1 \Leftrightarrow \sqrt {3 - m}  > 0\) \( \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\)

Mà \(m\) nguyên dương nên \(m \in \left\{ {1;2} \right\}\).

Vậy có 2 giá trị của \(m\) thỏa mãn.

Câu 24 Trắc nghiệm

Phương trình \({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\) có tổng các nghiệm gần nhất với số nào dưới đây:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x \Leftrightarrow {2^{23{x^3} + x}} + 23{x^3} + x = {2^{10{x^2}}} + 10{x^2}\)

Xét hàm số \(f(t) = {2^t} + t;f'(t) = {2^t}\ln 2 + 1 > 0,\forall t\)

\( \Rightarrow f(23{x^3} + x) = f(10{x^2}) \Leftrightarrow 23{x^3} + x = 10{x^2} \Leftrightarrow x(23{x^2} - 10x + 1) = 0\)

Theo vi-et cho phương trình bậc 3 ta có \({x_1} + {x_2} + {x_3} =  - \dfrac{b}{a} = \dfrac{{10}}{{23}} \approx 0,45\)

Câu 25 Trắc nghiệm

Tìm giá trị $m$ để phương trình \({2^{\left| {x - 1} \right| + 1}} + {2^{\left| {x - 1} \right|}} + m = 0\) có nghiệm duy nhất

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt \(\left| {x - 1} \right| = a\) khi đó phương trình trở thành \({2^{a + 1}} + {2^a} + m = 0\) (1)

Để phương trình đã cho có nghiệm duy nhất thì pt (1) bắt buộc phải có nghiệm duy nhất $a=0$ ( vì nếu $a>0$ thì sẽ tồn tại 2 giá trị của $x$)

Nên ${2^1} + {2^0} + m = 0$. Suy ra $m =  - 3$

Câu 26 Trắc nghiệm

Phương trình $x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}$có tổng các nghiệm bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

$\begin{array}{l}x\left( {{2^{x - 1}} + 4} \right) = {2^{x + 1}} + {x^2} \Leftrightarrow x{.2^{x - 1}} - {4.2^{x - 1}} + 4x - {x^2} = 0 \Leftrightarrow \left( {x - 4} \right)\left( {{2^{x - 1}} - x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 4\\{2^{x - 1}} - x = 0\,\left( * \right)\end{array} \right.\end{array}$

Xét hàm số $f\left( x \right) = {2^{x - 1}} - x$ trên $\mathbb{R}$ . Ta có

$f'\left( x \right) = {2^{x - 1}}\ln 2 - 1 = 0 \Leftrightarrow x = {x_0} = 1 + {\log _2}\left( {\dfrac{1}{{\ln 2}}} \right)$

$f'\left( x \right) < 0 \Leftrightarrow x < {x_0};f'\left( x \right) > 0 \Leftrightarrow x > {x_0}$

nên phương trình $f(x) = 0$ có tối đa 1 nghiệm trong các khoảng $\left( {-\infty ;{x_0}} \right)$  và $\left( {{x_0}; + \infty } \right)$

Mà $f\left( 1 \right) = f\left( 2 \right) = 0$  nên phương trình (*) có 2 nghiệm $x = 1$ và $x = 2$

Tổng các nghiệm của phương trình đã cho là $7$.