Trong không gian Oxyz, cho hai điểm \(A\left( {2; - 2;4} \right);\,\,B\left( { - 3;3; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 8 = 0\). Xét điểm M là điểm thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + 3M{B^2}\) bằng:
Gọi \(I\left( {a;b;c} \right)\) là điểm thỏa mãn đẳng thức : \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow 0 \)
\(\begin{array}{l} \Rightarrow 2\left( {2 - a; - 2 - b;4 - c} \right) + 3\left( { - 3 - a;3 - b; - 1 - c} \right) = \overrightarrow 0 \\ \Rightarrow \left\{ \begin{array}{l}4 - 2a - 9 - 3a = 0\\ - 4 - 2b + 9 - 3b = 0\\8 - 2c - 3 - 3c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 5a - 5 = 0\\ - 5b + 5 = 0\\ - 5c + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 1\\c = 1\end{array} \right. \Rightarrow I\left( { - 1;\;1;\;1} \right)\end{array}\)
Ta có :
\(\begin{array}{l}2M{A^2} + 3M{B^2} = 2{\overrightarrow {MA} ^2} + 3{\overrightarrow {MB} ^2}\\ = 2{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + 3{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2}\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right) + \overrightarrow {MI} \left( {2\overrightarrow {IA} + 3\overrightarrow {IB} } \right)\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right)\end{array}\)
Do I, A, B cố định nên \(2I{A^2} + 3I{B^2} = const\).
\( \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} \Leftrightarrow 5M{I^2}_{\min }\)\( \Leftrightarrow \) M là hình chiếu của I trên (P)
Gọi \(\left( \Delta \right)\) là đường thẳng đi qua I vuông góc với (P) , ta có phương trình của \(\left( \Delta \right):\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 1 + 2t\end{array} \right.\).
M là hình chiếu của I lên (P) \( \Rightarrow M \in \left( \Delta \right) \Rightarrow M\left( { - 1 + 2t;1 - t;1 + 2t} \right)\) .
Lại có \(M \in \left( P \right)\)
\(\begin{array}{l} \Rightarrow 2\left( { - 1 + 2t} \right) - \left( {1 - t} \right) + 2\left( {1 + 2t} \right) - 8 = 0\\ \Leftrightarrow - 2 + 4t - 1 + t + 2 + 4t - 8 = 0\\ \Leftrightarrow 9t - 9 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {1;0;3} \right)\end{array}\)
Khi đó ta có
\(\begin{array}{l}M{I^2} = 4 + 1 + 4 = 9;\;\;\;I{A^2} = 9 + 9 + 9 = 27;\;\;\;I{B^2} = 4 + 4 + 4 = 13\\ \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} = 5.9 + 2.27 + 3.12 = 135\end{array}\)
Trong không gian \(Oxyz\), gọi \(\Delta \) là đường thẳng đi qua \(M\left( {0;0;2} \right)\) và song song với mặt phẳng \(\left( P \right):x + y + z + 3 = 0\) sao cho khoảng cách từ \(A\left( {5;0;0} \right)\) đến đường thẳng \(\Delta \) nhỏ nhất. Một vectơ chỉ phương của đường thẳng \(\Delta \) là
Do \(\Delta \) là đường thẳng đi qua \(M\left( {0;0;2} \right)\) và song song với mặt phẳng \(\left( P \right):x + y + z + 3 = 0\) \( \Rightarrow \Delta \subset \left( Q \right)\): qua M và song song \(\left( P \right)\).
Phương trình mặt phẳng (Q) là: \(x + y + z - 2 = 0\).
Dựng \(AH \bot \left( Q \right),AK \bot \Delta \). Ta có: \(AK \ge AH\). Do đó, khoảng cách từ \(A\left( {5;0;0} \right)\) đến đường thẳng \(\Delta \) nhỏ nhất và bằng AH khi và chỉ khi K trùng H
Khi đó, đường thẳng \(\Delta \) được xác định là đường thẳng đi qua M và H.
Phương trình đường thẳng AH là \(\left\{ \begin{array}{l}x = 5 + t\\y = t\\z = t\end{array} \right. \Rightarrow \)Giả sử \(H\left( {5 + t;t;t} \right) \Rightarrow 5 + t + t + t - 2 = 0 \Leftrightarrow t = - 1 \Rightarrow H\left( {4; - 1; - 1} \right)\)
\( \Rightarrow \overrightarrow {MH} = \left( {4; - 1; - 3} \right) \Rightarrow \Delta \) có 1 VTCP là \(\overrightarrow {{u_3}} = \left( {4; - 1; - 3} \right)\).
Trong không gian \(Oxyz\), cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(A'\left( {\sqrt 3 ; - 1;1} \right)\), hai đỉnh \(B,C\) thuộc trục \(Oz\) và \(AA' = 1\) (\(C\) không trùng với \(O\)). Biết véc tơ \(\overrightarrow u = \left( {a;b;2} \right)\) với \(a,b \in \mathbb{R}\) là một véc tơ chỉ phương của đường thẳng \(A'C\). Tính \(T = {a^2} + {b^2}\).
Phương trình \(BC \equiv Oz:\left\{ \begin{array}{l}x = 0\\y = 0\\z = t\end{array} \right.\).
Mặt phẳng \(\left( {AMM'A'} \right)\) đi qua \(A'\) và vuông góc với \(BC\) nên \(\left( {AMM'A'} \right)\) đi qua \(A'\left( {\sqrt 3 ; - 1;1} \right)\) và nhận \(\overrightarrow k = \left( {0;0;1} \right)\) làm VTPT hay \(\left( {AMM'A'} \right):0\left( {x - \sqrt 3 } \right) + 0\left( {y + 1} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow z = 1\).
\(M = BC \cap \left( {AMM'A'} \right) \Rightarrow t - 1 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {0;0;1} \right)\)
Mà \(AA' = 1,A'M = \sqrt {{{\left( {\sqrt 3 - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {1 - 1} \right)}^2}} = 2\) \( \Rightarrow AM = \sqrt {A'{M^2} - A'{A^2}} = \sqrt {{2^2} - {1^2}} = \sqrt 3 \).
Tam giác \(ABC\) đều có độ dài đường cao \(AM = \dfrac{{BC\sqrt 3 }}{2} = \sqrt 3 \Rightarrow BC = 2\)
Gọi \(B\left( {0;0;m} \right),C\left( {0;0;n} \right)\) với \(n \ne 0\) thì \(BC = 2 \Leftrightarrow \left| {m - n} \right| = 2\) và \(M\left( {0;0;1} \right)\) là trung điểm \(BC \Leftrightarrow \dfrac{{m + n}}{2} = 1 \Leftrightarrow m + n = 2\).
Khi đó \(m = 0,n = 2\) vì \(n \ne 0\) hay \(C\left( {0;0;2} \right)\).
\( \Rightarrow \overrightarrow {A'C} = \left( { - \sqrt 3 ;1;1} \right)\) hay \(2\overrightarrow {AC'} = \left( { - 2\sqrt 3 ;2;2} \right)\) là một VTCP của \(A'C\).
Suy ra \(a = - 2\sqrt 3 ,b = 2 \Rightarrow {a^2} + {b^2} = {\left( { - 2\sqrt 3 } \right)^2} + {2^2} = 16\).
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).
Gọi \(N = d \cap \Delta \). Giả sử \(N\left( {2 - 2t;\,\,8 + t;\,\,t} \right) \Rightarrow \overrightarrow {MN} = \left( { - 2t;\,\,7 + t;\,\,t - 1} \right)\).
Đường thẳng \(\Delta :\,\,\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\) có 1 VTCP là \(\overrightarrow {{u_\Delta }} = \left( { - 2;1;1} \right)\), đường thẳng \(d\) nhận \(\overrightarrow {MN} \) là 1 VTPT.
Do \(d \bot \Delta \) nên \(\overrightarrow {MN} .\overrightarrow {{u_\Delta }} = 0\).
\(\begin{array}{l} \Leftrightarrow - 2t.\left( { - 2} \right) + \left( {7 + t} \right).1 + \left( {t - 1} \right).1 = 0\\ \Leftrightarrow 6t + 6 = 0 \Leftrightarrow t = - 1\\ \Rightarrow \overrightarrow {MN} = \left( {2;6; - 2} \right)\end{array}\)
\( \Rightarrow \) Đường thẳng \(d\) đi qua \(M\left( {2;1;1} \right)\) và có 1 VTCP \(\overrightarrow {{u_d}} = \dfrac{1}{2}\overrightarrow {MN} = \left( {1;3; - 1} \right)\) có phương trình là: \(\left\{ \begin{array}{l}x = 2 + t'\\y = 1 + 3t'\\z = 1 - t'\end{array} \right.\).
Khi đó, giao điểm của \(d\) và mặt phẳng \(\left( {Oyz} \right)\) ứng với \(t'\) thỏa mãn \(x = 2 + t' = 0 \Leftrightarrow t' = - 2\).
\( \Rightarrow \) Tọa độ giao điểm của \(d\) và mặt phẳng \(\left( {Oyz} \right)\) là: \(\left( {0; - 5;3} \right)\).
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,4y - z + 3 = 0\) và hai đường thẳng \({\Delta _1}:\,\,\dfrac{{x - 1}}{1} = \dfrac{{y + 2}}{4} = \dfrac{{z - 2}}{3}\), \({\Delta _2}:\,\,\dfrac{{x + 4}}{5} = \dfrac{{y + 7}}{9} = \dfrac{z}{1}\). Đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) và cắt cả hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) có phương trình là
Gọi \(M = d \cap {\Delta _1} \Rightarrow M\left( {1 + {t_1};\,\, - 2 + 4{t_1};\,\,2 + 3{t_1}} \right)\), \(N = d \cap {\Delta _2} \Rightarrow N\left( { - 4 + 5{t_2};\,\, - 7 + 9{t_2};\,\,{t_2}} \right)\).
\( \Rightarrow \overrightarrow {MN} = \left( {5{t_2} - {t_1} - 5;\,\,9{t_2} - 4{t_1} - 5;\,\,{t_2} - 3{t_1} - 2} \right)\).
Vì \(d \bot \left( P \right):\,\,4y - z + 3 = 0\) có 1 VTPT là \(\overrightarrow n \left( {0;4; - 1} \right)\) nên \(\overrightarrow {MN} \) và \(\overrightarrow n \) là 2 vectơ cùng phương.
\( \Rightarrow \overrightarrow {MN} = k\overrightarrow n \,\,\left( {k \ne 0} \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}5{t_2} - {t_1} - 5 = 0\\9{t_2} - 4{t_1} - 5 = 4k\\{t_2} - 3{t_1} - 2 = - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\9{t_2} - 4{t_1} - 5 = 4k\\4{t_2} - 12{t_1} - 8 = - 4k\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\13{t_2} - 16{t_1} - 13 = 0\\{t_2} - 3{t_1} - 2 = - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\13{t_2} - 16\left( {5{t_2} - 5} \right) - 13 = 0\\{t_2} - 3{t_1} - 2 = - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\ - 67{t_2} + 67 = 0\\{t_2} - 3{t_1} - 2 = - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_2} = 1\\{t_1} = 0\\k = 1\end{array} \right.\) .
\( \Rightarrow M\left( {1;\,\, - 2;\,\,2} \right),\,\,N\left( {1;\,\,2;\,\,1} \right)\) \( \Rightarrow \overrightarrow {MN} = \left( {0;4; - 1} \right)\).
Vậy phương trình đường thẳng \(d\) đi qua \(M\) và có 1 VTCP \(\overrightarrow {MN} \left( {0;4; - 1} \right)\) là: \(\left\{ \begin{array}{l}x = 1\\y = - 2 + 4t\\z = 2 - t\end{array} \right.\)
Trong không gian \(Oxyz\), cho đường thẳng \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và mặt phẳng \(\left( P \right):2x - y + 2z - 2 = 0.\) Có bao nhiêu điểm \(M\) thuộc d sao cho M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)?
Vì \(M \in d:\,\,\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1} \Rightarrow \) Gọi \(M\left( { - 2t;\,\,1 + t;\,\,t} \right)\).
Ta có: \(OM = \sqrt {{{\left( { - 2t} \right)}^2} + {{\left( {1 + t} \right)}^2} + {t^2}} = \sqrt {6{t^2} + 2t + 1} \).
\(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {2\left( { - 2t} \right) - \left( {1 + t} \right) + 2t - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \dfrac{{\left| { - 3t - 3} \right|}}{3} = \left| {t + 1} \right|\).
Theo bài ra ta có: M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)\( \Leftrightarrow \sqrt {6{t^2} + 2t + 1} = \left| {t + 1} \right|\).
\(\begin{array}{l} \Leftrightarrow 6{t^2} + 2t + 1 = {t^2} + 2t + 1\\ \Leftrightarrow 5{t^2} = 0 \Leftrightarrow t = 0\end{array}\)
\( \Rightarrow M\left( {0;1;0} \right)\)
Vậy có 1 điểm \(M\) thỏa mãn yêu cầu bài toán là \(M\left( {0;1;0} \right)\).
Trong không gian với hệ trục tọa độ \({\mathop{\rm Oxyz}\nolimits} \), cho điểm \(A(4; - 3;5)\) và \(B(2; - 5;1).\)Viết phương trình mặt phẳng \((P)\) đi qua trung điểm \(I\) của đoạn thẳng \(AB\) và vuông góc với đường thẳng \((d):\dfrac{{x + 1}}{3} = \dfrac{{y - 5}}{{ - 2}} = \dfrac{{z + 9}}{{13}}\).
Ta có \(A\left( {4; - 3;5} \right),B\left( {2; - 5;1} \right)\) nên trung điểm của AB là \(I\left( {3; - 4;3} \right)\).
Đường thẳng \(\left( d \right):\dfrac{{x + 1}}{3} = \dfrac{{y - 5}}{{ - 2}} = \dfrac{{z + 9}}{{13}}\) có 1 VTCP là \(\overrightarrow {{u_d}} = \left( {3; - 2;13} \right)\).
Mặt phẳng \(\left( P \right)\) vuông góc với d nên mặt phẳng (P) có 1 VTPT \(\overrightarrow {{n_P}} = \overrightarrow {{u_d}} = \left( {3; - 2;13} \right)\).
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow n = \left( {3; - 2;13} \right)\) và đi qua \(I\left( {3; - 4;3} \right)\) có phương trình là:
\(3\left( {x - 3} \right) - 2\left( {y + 4} \right) + 13\left( {z - 3} \right) = 0\)\( \Leftrightarrow 3x - 2y + 13z - 56 = 0\).
Đề thi THPT QG - 2021 - mã 101
Trong không gian \(Oxyz\), cho điểm \(M\left( { - 1;3;2} \right)\) và mặt phẳng \(\left( P \right):x - 2y + 4z + 1 = 0\). Đường thẳng đi qua \(M\) và vuông góc với \(\left( P \right)\) có phương trình là
Gọi \(d\) là đường thẳng đi qua \(M\left( { - 1;3;2} \right)\) và vuông góc với mặt phẳng \(\left( P \right):\,\,x - 2y + 4z + 1 = 0\).
\( \Rightarrow \overrightarrow {{u_d}} = \overrightarrow {{n_P}} = \left( {1; - 2;4} \right)\).
\( \Rightarrow \) Phương trình đường thẳng là: \(\dfrac{{x + 1}}{1} = \dfrac{{y - 3}}{{ - 2}} = \dfrac{{z - 2}}{4}\).
Trong không gian \(Oxyz,\) gọi \(d'\) là hình chiếu vuông góc của đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = t\\y = t\\z = t\end{array} \right.\) trên mặt phẳng \(\left( {Oxy} \right)\). Phương trình tham số của đường thẳng \(d'\) là
Bước 1:
Đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = t\\y = t\\z = t\end{array} \right.\) đi qua hai điểm \(O\left( {0;0;0} \right)\) và \(A\left( {1;1;1} \right)\).
Bước 2:
Hình chiếu của điểm \(O,\,\,A\) trên \(\left( {Oxy} \right)\) lần lượt là \(O\left( {0;0;0} \right)\) và \(A'\left( {1;1;0} \right)\).
Bước 3:
Khi đó hình chiếu của \(d\) là đường thẳng \(d'\) đi qua \(O,\,\,A'\), nhận \(\overrightarrow {OA'} = \left( {1;1;0} \right)\) là 1 VTCP nên có phương trình tham số là \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right.\).