Đại cương về dao động điều hòa
Kỳ thi ĐGNL ĐHQG Hà Nội
Vận tốc của vật dao động điều hoà có phương trình li độ $x = A\cos \left( {\omega t - \dfrac{\pi }{3}} \right)$ có độ lớn cực đại khi:
Ta có, vận tốc của vật có độ lớn cực đại khi vật ở VTCB
Tại thời điểm ban đầu t =0 : \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\left( { - \dfrac{\pi }{3}} \right) = \dfrac{A}{2}\\v = - A\omega \sin \left( { - \dfrac{\pi }{3}} \right) > 0\end{array} \right.\)
=> Vận tốc của vật có độ lớn cực đại khi \(t = \dfrac{T}{6} + \dfrac{T}{4} = \dfrac{{5T}}{{12}}\)
Khi nói về một vật dao động điều hòa có biên độ $A$ và chu kì $T$, với mốc thời gian $(t = 0)$ là lúc vật ở vị trí biên, phát biểu nào sau đây là sai?
Ta có: t = 0, x0 = A
A - sai vì sau T/8 vật ở vị trí có li độ
\(x = \frac{{A\sqrt 2 }}{2} \to S = A - \frac{{A\sqrt 2 }}{2}\)
B, C, D - đúng
Một vật dao động điều hoà với phương trình $x = A\cos \left( {\omega t + \dfrac{\pi }{3}} \right)cm$. Biết quãng đường vật đi được trong thời gian $1s$ tính từ thời điểm gốc là $2A$ và trong $\dfrac{2}{3}s$ là $9cm$. Giá trị của $A$ và $ω$ là:
Ta có khoảng thời gian vật đi được quãng đường $2A$ là $\dfrac{T}{2}$
\( \to \dfrac{T}{2} = 1{\rm{s}} \to T = 2{\rm{s}} \to \omega {\rm{ = }}\dfrac{{2\pi }}{T} = \pi ({\rm{r}}a{\rm{d/s)}}\)
Tại $t = 0$:
\(\left\{ \begin{array}{l}{x_0} = Ac{\rm{os}}\dfrac{\pi }{3} = \dfrac{A}{2}\\v = - A\omega\sin \dfrac{\pi }{3} < 0\end{array} \right.\)
Trong khoảng thời gian \(\Delta t = \dfrac{2}{3}s = \dfrac{T}{3}\) từ thời điểm gốc vật đi được quãng đường $S = 9cm$
Ta có: \(S = \dfrac{A}{2} + A = 1,5A = 9cm \to A = 6cm\)
Một vật dao động điều hoà có đồ thị như hình vẽ.
Phương trình dao động của vật là:
Từ đồ thị, ta có: \(A{\text{ }} = {\text{ }}4cm\)
Thời gian vật đi từ \(t = 0{\text{ }}\left( {x = \frac{A}{2}} \right)\) đến \(t = 2,5s{\text{ }}\left( {x = 0} \right)\) là:
\(\Delta t = 2,5{\rm{s}} = \frac{T}{6} + \frac{T}{4} = \frac{{5T}}{{12}} \to T = 6{\rm{s}} \to \omega = \frac{{2\pi }}{T} = \frac{\pi }{3}ra{\rm{d}}/s\)
Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi = 2\\{\rm{v = - A}}\omega {\rm{sin}}\varphi > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi = \frac{2}{4} = \frac{1}{2}\\\sin \varphi < 0\end{array} \right. \to \varphi = - \frac{\pi }{3}\)
\( \Rightarrow x = 4c{\rm{os}}\left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)cm\)
Một vật dao động điều hòa trên quỹ đạo dài $8cm$ với chu kì $T=2s$. Chọn gốc thời gian là lúc vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là :
Ta có: $L=2A = 8cm => A = 4cm$
Tần số góc: $\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{2} = \pi ra{\rm{d}}/s$
Tại t=0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi = 0\\{\rm{v = - A}}\omega {\rm{sin}}\varphi > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi = 0\\\sin \varphi < 0\end{array} \right. \to \varphi = - \frac{\pi }{2}\)
=> $x{\rm{ }} = {\rm{ }}4cos\left( {\pi t - \frac{\pi }{2}} \right)$
Đồ thị vận tốc của một vật cho ở hình bên, phương trình nào dưới đây là phương trình dao động của vật:
Từ đồ thị, ta có: $T{\rm{ }} = {\rm{ }}2s \to \omega = \frac{{2\pi }}{T} = \pi ra{\rm{d}}/s$
$A\omega = 6\pi cm/s \to A = \frac{{6\pi }}{\omega } = \frac{{6\pi }}{\pi } = 6cm$
Tại t = 0: \({\rm{v = - A}}\omega {\rm{sin}}\varphi = 0 \to \sin \varphi = 0 \to \left[ \begin{array}{l}\varphi = 0\\\varphi = \pi \end{array} \right.\)
và đang đi theo chiều âm\( \to \varphi = 0\)
\( \Rightarrow x = 6c{\rm{os}}\left( {\pi t} \right)cm\)
Trong các phương trình sau phương trình nào không biểu thị cho dao động điều hòa ?
B- không biểu thị cho dao động điều hòa vì biên độ dao động không phải là hàm của thời gian
Một vật dao động điều hoà chu kỳ T. Gọi \({v_{max}}\) và \({a_{max}}\) tuơng ứng là vận tốc cực đại và gia tốc cực đại của vật. Hệ thức liên hệ sai giữa \({v_{max}}\) và \({a_{max}}\) là:
Ta có: $\left\{ \begin{gathered}{v_{{\text{max}}}} = \omega A \hfill \\{a_{{\text{max}}}} = {\omega ^2}A \hfill \\\end{gathered} \right. \to \left[ \begin{gathered}\frac{{{a_{{\text{max}}}}}}{{{v_{{\text{max}}}}}} = \frac{{{\omega ^2}A}}{{\omega A}} = \omega = \frac{{2\pi }}{T} \hfill \\\frac{{{a_{{\text{max}}}}}}{{{v^2}_{{\text{max}}}}} = \frac{{{\omega ^2}A}}{{{{(\omega A)}^2}}} = \frac{1}{A} \hfill \\\frac{{{a^2}_{{\text{max}}}}}{{{v_{{\text{max}}}}}} = \frac{{{{({\omega ^2}A)}^2}}}{{\omega A}} = {\omega ^3}A \hfill \\\end{gathered} \right.$
Tại thời điểm t thì tích của li độ và vận tốc của vật dao động điều hòa âm (x.v < 0), khi đó
Ta có: x.v < 0, có thể xảy ra 2 TH
+ x > 0,v < 0 : Vật đi từ A => 0: Vật đang chuyển động danh dần theo chiều âm
+ x < 0, v > 0: Vật đi từ -A=> 0: Vật đang chuyển động nhanh dần theo chiều dương
=> x.v <0: Vật đang chuyển động nhanh dần về vị trí cân bằng
Vật có đồ thị li độ dao động như hình vẽ. Biên độ và chu kì của vật là:
Từ đồ thị, ta có:
$\begin{gathered}A = 2cm \hfill \\T = 0,4{\text{s}} \hfill \\\end{gathered} $
Vật có đồ thị dao động như hình vẽ. Vận tốc cực đại có giá trị
Ta có:
$\begin{gathered}A = 6cm \hfill \\2T = 0,4{\text{s}} \to T = 0,2{\text{s}} \to \omega {\text{ = }}\frac{{2\pi }}{T} = 10\pi ra{\text{d}}/s \hfill \\\end{gathered} $
$ \to {v_{{\text{max}}}} = A\omega = 60\pi cm/s$
Vật dao động điều hòa có đồ thị vận tốc - thời gian như hình vẽ. Tần số góc và pha ban đầu của li độ của vật là:
Ta có:
$\left\{ \begin{gathered}A\omega = 10\pi cm/s \hfill \\\dfrac{{5T}}{{12}} = 0,1{\text{s}} \to T = 0,24{\text{s}} \to \omega = \dfrac{{25\pi }}{3}ra{\text{d}}/s \hfill \\\end{gathered} \right.$
Tại \(t = 0\): \(\left\{ \begin{array}{l}v = 5\pi \\v > 0\end{array} \right. \leftrightarrow \left\{ \begin{array}{l} - A\omega \sin \varphi {\rm{ = 5}}\pi \\{\rm{sin}}\varphi < 0\end{array} \right. \leftrightarrow \left\{ \begin{array}{l}\sin \varphi {\rm{ = }}\dfrac{{{\rm{ - 5}}\pi }}{{10\pi }} = \dfrac{{{\rm{ - 1}}}}{2}\\{\rm{sin}}\varphi < 0\end{array} \right. \to \varphi = \left[ \begin{array}{l} - \dfrac{\pi }{6}\\\dfrac{{7\pi }}{6}\end{array} \right.\)
Mặt khác, vận tốc đang tăng => \(\varphi = \dfrac{{7\pi }}{6}\)
Vật dao động điều hòa hàm cosin có gia tốc biểu diễn như hình. Biên độ và pha ban đầu của vật là:
Ta có:
$\left\{ \begin{gathered}A{\omega ^2} = 2m/{s^2} \hfill \\T = 2{\text{s}} \to \omega = \pi ra{\text{d}}/s \hfill \\\end{gathered} \right. \to A = \frac{2}{{{\pi ^2}}} = 0,2m = 20cm$
Tại t=0: a=0 và đang đi lên => x=0 và đi theo chiều âm.
$\to \left\{ \begin{gathered}x = 0 \hfill \\v < 0 \hfill \\\end{gathered} \right. \leftrightarrow \left\{ \begin{gathered}Ac{\text{os}}\varphi {\text{ = 0}} \hfill \\{\text{sin}}\varphi > 0 \hfill \\\end{gathered} \right. \leftrightarrow \left\{ \begin{gathered}c{\text{os}}\varphi {\text{ = 0}} \hfill \\{\text{sin}}\varphi > 0 \hfill \\\end{gathered} \right. \to \varphi = \frac{\pi }{2}$
$ \to A = 20cm,\varphi = \frac{\pi }{2}$
Một vật dao động điều hòa có đồ thị biểu diễn li độ x theo thời gian t như hình bên. Chu kì dao động của vật là
Từ đồ thị ta thấy trong khoảng thời gian từ 10 ms đến 60 ms, vật thực hiện được \(\frac{1}{2}\) chu kì:
\(\frac{T}{2} = 60 - 10 \Rightarrow T = 100\,\,\left( {ms} \right) = 0,1\,\,\left( s \right)\)
Một vật dao động điều hòa với phương trình $x = Acos\left( {\omega t + \varphi } \right)$. \(\varphi \) được gọi là:
Ta có: \(x = Acos\left( {\omega t + \varphi } \right)\)
+ \(x\): li độ dao động của vật
+ \(A\): Biên độ dao động của vật
+ \(\omega \): Tần số góc của dao động
+ \(\varphi \): Pha ban đầu của dao động
+ \(\omega t + \varphi \): Pha dao động tại thời điểm t