Các dạng toán về phép nhân, chia số nguyên, bội và ước của một số nguyên (tiếp)
Sách kết nối tri thức với cuộc sống
Có bao nhiêu ước của \( - 24.\)
Có \(8\) ước tự nhiên của \(24\) là: \(1;2;3;4;6;8;12;24\)
Có \(8\) ước nguyên âm của \(24\) là: \(-1;-2;-3;-4;-6;-8;-12;-24\)
Vậy có \(8.2 = 16\) ước của \( 24\) nên cũng có $16$ ước của $-24.$
Tìm $x,$ biết: $12\; \vdots \;x$ và $x < - 2$
Tập hợp ước của \(12\) là: \(A = \left\{ { \pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 12} \right\}\)
Vì \(x < - 2\) nên \(x \in \left\{ { - 3; - 4; - 6; - 12} \right\}\)
Tính nhanh $\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)$ ta được kết quả là
$\begin{array}{l}\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)\\ = \left[ {125.\left( { - 8} \right)} \right].\left[ {\left( { - 5} \right).20} \right].\left( { - 2} \right)\\ = - \left( {125.8} \right).\left[ { - \left( {5.20} \right)} \right].\left( { - 2} \right)\\ = \left( { - 1000} \right).\left( { - 100} \right).\left( { - 2} \right)\\ = 100000.\left( { - 2} \right) = - 200000\end{array}$
Giá trị lớn nhất của $a$ thỏa mãn $a + 4$ là ước của $9$ là:
$a + 4$ là ước của $9$
$ \Rightarrow \;\left( {a + 4} \right) \in U\left( 9 \right) = \left\{ { \pm 1; \pm 3; \pm 9} \right\}\;$
Ta có bảng giá trị như sau:
Vậy giá trị lớn nhất của \(a\) là \(a = 5\)
Giá trị biểu thức \(M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\) là
Vì trong tích có một thừa số bằng \(0\) nên \(M = 0\)
Tìm $x$ biết: \(25.x = - 225\)
\(\begin{array}{l}25.x = - 225\\x = - 225:25\\x = - 9\end{array}\)
Cho \(x \in \mathbb{Z}\) và \(\left( { - 154 + x} \right) \vdots \, 3\) thì:
Ta có:
\(\left( { - 154 + x} \right) \, \vdots \, 3\)
\(\left( { - 153 - 1 + x} \right) \, \vdots \, 3\)
Suy ra \(\left( {x - 1} \right) \, \vdots \, 3\) (do \( - 153 \, \vdots \, 3\))
Do đó \(x - 1 = 3k \Rightarrow x = 3k + 1\)
Vậy \(x\) chia cho \(3\) dư \(1.\)
Tính hợp lý \(A = - 43.18 - 82.43 - 43.100\)
\(\begin{array}{l}A = - 43.18 - 82.43 - 43.100\\A = 43.\left( { - 18 - 82 - 100} \right)\\A = 43.\left[ { - \left( {18 + 82 + 100} \right)} \right]\\A = 43.\left( { - 200} \right)\\A = - 8600\end{array}\)
Giá trị nào dưới đây của \(x\) thỏa mãn \( - 6\left( {x + 7} \right) = 96?\)
\(\begin{array}{l} - 6\left( {x + 7} \right) = 96\\x + 7 = 96:\left( { - 6} \right)\\x + 7 = - 16\\x = - 16 - 7\\x = - 23\end{array}\)
Tìm $n \in Z,$ biết: $\left( {n{\rm{ }} + 5} \right) \vdots \left( {n{\rm{ }} + 1} \right)$
$\left( {n{\rm{ }} + 5} \right) \vdots \left( {n{\rm{ }} + 1} \right)$$ \Rightarrow \left( {n + 1} \right) + 4 \, \vdots \, \left( {n{\rm{ }} + 1} \right)$
Vì \(n + 1 \, \vdots \, n + 1\) và \(n \in Z\) nên để \(n + 5 \, \vdots \, n + 1\) thì \(4 \, \vdots \, n + 1\)
Hay \(n + 1 \in U\left( 4 \right) = \left\{ { \pm 1; \pm 2; \pm 4} \right\}\)
Ta có bảng:
Vậy \(n \in \left\{ { - 5; - 3; - 2;0;1;3} \right\}\)
Có bao nhiêu số nguyên $a < 5$ biết: $10$ là bội của $\left( {2a + 5} \right)$
Vì \(10\) là bội của \(2a + 5\) nên \(2a + 5\) là ước của \(10\)
\(U\left( {10} \right) = \left\{ { \pm 1; \pm 2; \pm 5; \pm 10} \right\}\)
Ta có bảng:
Mà \(a < 5\) nên \(a \in \left\{ { - 3; - 2;0; - 5} \right\}\)
Vậy có \(4\) giá trị nguyên của \(a\) thỏa mãn bài toán.
Có bao nhiêu cặp số \(\left( {x;y} \right)\) nguyên biết: \(\left( {x - 1} \right)\left( {y + 1} \right) = 3?\)
Ta có: \(3 = 1.3 = 3.1 = \left( { - 1} \right).\left( { - 3} \right) = \left( { - 3} \right).\left( { - 1} \right)\)
Ta có bảng:
Vậy có \(4\) cặp số \(\left( {x;y} \right)\) thỏa mãn là: \(\left( {2;2} \right),\left( {4;0} \right),\left( {0; - 4} \right),\left( { - 2; - 2} \right)\)
Cho $Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)$, chọn câu đúng.
$\begin{array}{l}Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)\\Q = - 135.17 - 121.17 + 256.17\\Q = 17.\left( { - 135 - 121 + 256} \right)\\Q = 17.\left( { - 256 + 256} \right)\\Q = 17.0\\Q = 0\end{array}$
Tìm số nguyên \(x\) thỏa mãn \({\left( { - 9} \right)^2}.x = 150 + 12.13x\)
\(\begin{array}{l}{\left( { - 9} \right)^2}.x = 150 + 12.13x\\81x = 150 + 156x\\81x - 156x = 150\\ - 75x = 150\\x = 150:\left( { - 75} \right)\\x = - 2\end{array}\)
Cho \(a\) và \(b\) là hai số nguyên khác \(0.\) Biết \(a \, \vdots \, b\) và \(b \, \vdots \, a.\) Khi đó
Ta có:
\(\begin{array}{l}a \, \vdots \, b \Rightarrow a = b.{q_1}\left( {{q_1} \in Z} \right)\\b \, \vdots \, a \Rightarrow b = a.{q_2}\left( {{q_2} \in Z} \right)\end{array}\)
Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1} = a.\left( {{q_1}{q_2}} \right)\)
Vì \(a \ne 0\) nên \(a = a\left( {{q_1}{q_2}} \right) \Rightarrow 1 = {q_1}{q_2}\)
Mà \({q_1},{q_2} \in Z\) nên \({q_1} = {q_2} = 1\) hoặc \({q_1} = {q_2} = - 1\)
Do đó \(a = b\) hoặc \(a = - b\)
Gọi \(A\) là tập hợp các giá trị $n \in Z$ để \(\left( {{n^2} - 7} \right)\) là bội của \(\left( {n + 3} \right)\). Tổng các phần tử của \(A\) bằng:
Ta có:\({n^2} - 7 = {n^2} + 3n - 3n - 9 + 2\)\( = n\left( {n + 3} \right) - 3\left( {n + 3} \right) + 2\)\( = \left( {n - 3} \right)\left( {n + 3} \right) + 2\)
Vì \(n \in Z\) nên để \({n^2} - 7\) là bội của \(n + 3\) thì \(2\) là bội của \(n + 3\) hay \(n + 3\) là ước của \(2\)
\(Ư\left( 2 \right) = \left\{ { \pm 1; \pm 2} \right\}\) nên \(n + 3 \in \left\{ { \pm 1; \pm 2} \right\}\)
Ta có bảng:
Vậy \(n \in A = \left\{ { - 5; - 4; - 2; - 1} \right\}\)
Do đó tổng các phần tử của \(A\) là \(\left( { - 5} \right) + \left( { - 4} \right) + \left( { - 2} \right) + \left( { - 1} \right) = - 12\)
Cho \(x;\,y \in \mathbb{Z}\). Nếu \(5x + 46y\) chia hết cho $16$ thì \(x + 6y\) chia hết cho
Ta có:
\(\begin{array}{l}5x + 46y = 5x + 30y + 16y\\ = \left( {5x + 30y} \right) + 16y\\ = 5\left( {x + 6y} \right) + 16y\end{array}\)
Vì \(5x + 46y\) chia hết cho $16$ và $16y$ chia hết cho $16$ nên suy ra \(5\left( {x + 6y} \right)\) chia hết cho $16.$
Mà $5$ không chia hết cho $16$ nên suy ra \(x + 6y\) chia hết cho $16$
Vậy nếu \(5x + 46y\) chia hết cho $16$ thì \(x + 6y\) cũng chia hết cho $16.$
Có bao nhiêu số nguyên \(n\) thỏa mãn \(\left( {n - 1} \right)\) là bội của \(\left( {n + 5} \right)\) và \(\left( {n + 5} \right)\) là bội của \(\left( {n - 1} \right)?\)
Vì \(\left( {n - 1} \right)\) là bội của \(\left( {n + 5} \right)\) và \(\left( {n + 5} \right)\) là bội của \(n - 1\),
Nên \(n - 1\) khác \(0\) và \(n + 5\) khác \(0\)
Nên \(n + 5,n - 1\) là hai số đối nhau
Do đó:
\((n + 5) + (n - 1) = 0\)
\(2n + 5 - 1 = 0\)
\(2n + 4 = 0\)
\(2n = -4\)
\(n=-2\)
Vậy có 1 số nguyên n thỏa mãn bài toán.
Tìm \(x \in Z\) biết \(\left( {x + 1} \right) + \left( {x + 2} \right) + ... + \left( {x + 99} \right) + \left( {x + 100} \right) = 0\).
\(\begin{array}{l}\left( {x + 1} \right) + \left( {x + 2} \right) + ... + \left( {x + 99} \right) + \left( {x + 100} \right) = 0\\(x + x + .... + x) + (1 + 2 + ... + 100) = 0\\100{\rm{x}} + (100 + 1).100:2 = 0\\100{\rm{x}} + 5050 = 0\\100{\rm{x}} = - 5050\\x = - 50,5\end{array}\)
Mà \(x\in Z\) nên không có $x$ thỏa mãn.
Trong các phát biểu sau đây, phát biểu nào đúng?
Ta có: \( - 18 = \left( { - 6} \right).3\) nên \( - 18\) chia hết cho \( - 6\) => C đúng