Viết phân số \(\dfrac{4}{3}\) dưới dạng hỗn số ta được
Ta có: \(4:3\) bằng $1$ (dư \(1\) ) nên \(\dfrac{4}{3} = 1\dfrac{1}{3}\)
Tính \(\left( { - 2\dfrac{1}{4}} \right) + \dfrac{5}{2}\)
\(\left( { - 2\dfrac{1}{4}} \right) + \dfrac{5}{2} = - \dfrac{9}{4} + \dfrac{5}{2}\)\( = \dfrac{{ - 9}}{4} + \dfrac{{10}}{4} = \dfrac{1}{4}\)
Tìm \(x\) biết \(2\dfrac{x}{7} = \dfrac{{75}}{{35}}\)
\(\begin{array}{l}2\dfrac{x}{7} = \dfrac{{75}}{{35}}\\\dfrac{{2.7 + x}}{7} = \dfrac{{15}}{7}\\14 + x = 15\\x = 15 - 14\\x = 1\end{array}\)
Chọn câu đúng.
Đáp án A: \(\left( { - 3\dfrac{3}{4}} \right).1\dfrac{1}{2}\)\( = - \dfrac{{15}}{4}.\dfrac{3}{2} = - \dfrac{{45}}{8} = - 5\dfrac{5}{8} \ne - 3\dfrac{3}{8}\)
Nên A sai.
Đáp án B: \(3\dfrac{3}{4}:1\dfrac{1}{5} = \dfrac{{15}}{4}:\dfrac{6}{5} = \dfrac{{15}}{4}.\dfrac{5}{6}\)\( = \dfrac{{25}}{8} = 3\dfrac{1}{8} \ne 3\dfrac{3}{{20}}\) nên B sai.
Đáp án C: \(\left( { - 3} \right) - \left( { - 2\dfrac{2}{5}} \right)\)\( = \left( { - 3} \right) - \left( { - \dfrac{{12}}{5}} \right) = \left( { - 3} \right) + \dfrac{{12}}{5} = \dfrac{{ - 3}}{5}\)
Nên C đúng.
Đáp án D: \(5\dfrac{7}{{10}}.15 = \dfrac{{57}}{{10}}.15 = \dfrac{{171}}{2} \ne \dfrac{{105}}{2}\) nên D sai.
Tính giá trị biểu thức \(M = 60\dfrac{7}{{13}}.x + 50\dfrac{8}{{13}}.x - 11\dfrac{2}{{13}}.x\) biết \(x = - 8\dfrac{7}{{10}}\)
\(M = 60\dfrac{7}{{13}}.x + 50\dfrac{8}{{13}}.x - 11\dfrac{2}{{13}}.x\)
\(M = \left( {60\dfrac{7}{{13}} + 50\dfrac{8}{{13}} - 11\dfrac{2}{{13}}} \right).x\)
\(M = \left[ {\left( {60 + 50 - 11} \right) + \left( {\dfrac{7}{{13}} + \dfrac{8}{{13}} - \dfrac{2}{{13}}} \right)} \right].x\)
\(M = \left( {99 + 1} \right).x = 100x\)
Thay \(x = - 8\dfrac{7}{{10}}\) vào \(M\) ta được:
\(M = 100.\left( { - 8\dfrac{7}{{10}}} \right)\) \( = 100.\left( { - \dfrac{{87}}{{10}}} \right) = - 870\)
Tìm số tự nhiên \(x\) sao cho: \(6\dfrac{1}{3}:4\dfrac{2}{9} < x < \left( {10\dfrac{2}{9} + 2\dfrac{2}{5}} \right) - 6\dfrac{2}{9}\).
\(\begin{array}{l}6\dfrac{1}{3}:4\dfrac{2}{9} < x < \left( {10\dfrac{2}{9} + 2\dfrac{2}{5}} \right) - 6\dfrac{2}{9}\\\dfrac{{19}}{3}:\dfrac{{38}}{9} < x < \dfrac{{92}}{9} + \dfrac{{12}}{5} - \dfrac{{56}}{9}\\\dfrac{3}{2} < x < \dfrac{{32}}{5}\end{array}\)
Ta có:
\(\begin{array}{l}\dfrac{3}{2} < x < \dfrac{{32}}{5}\\1,5 < x < 6,4\end{array}\)
Vì x là số tự nhiên nên \(x \in \left\{ {2;3;4;5;6} \right\}\).
Dùng hỗn số viết thời gian ở đồng hồ trong các hình vẽ, ta được lần lượt các hỗn số là:
Hình a: \(2\dfrac{1}{3}\)
Hình b: \(4\dfrac{5}{6}\)
Hình c: \(6\dfrac{1}{6}\)
Hình d: \(9\dfrac{1}{2}\)
Vậy ta được các hỗn số: \(2\dfrac{1}{3}\); \(4\dfrac{5}{6}\); \(6\dfrac{1}{6}\); \(9\dfrac{1}{2}\).
Dùng phân số hoặc hỗn số (nếu có thể) để viết các đại lượng diện tích dưới đây theo mét vuông, ta được:
a) \(125\,d{m^2}\) b) \(218\,c{m^2}\) c) \(240\,d{m^2}\) d) \(34\,c{m^2}\)
a) \(125\,d{m^2} = \dfrac{{125}}{{100}}{m^2} = 1\dfrac{{25}}{{100}}\,{m^2}\)
b) \(218\,c{m^2} = \dfrac{{218}}{{10000}}{m^2} = \dfrac{{109}}{{5000}}\,{m^2}\)
c) \(240\,d{m^2} = \dfrac{{240}}{{100}}{m^2} = 2\dfrac{{40}}{{100}}\,{m^2}\)
d) \(34\,c{m^2} = \dfrac{{34}}{{10000}}{m^2} = \dfrac{{17}}{{5000}}\,{m^2}\)
Vậy ta được: \(1\dfrac{{25}}{{100}}\,{m^2}\); \(\dfrac{{109}}{{5000}}\,{m^2}\); \(2\dfrac{{40}}{{100}}\,{m^2}\); \(\dfrac{{17}}{{5000}}\,{m^2}\).
Viết 2 giờ 15 phút dưới dạng hỗn số với đơn vị là giờ:
2 giờ 15 phút = \(2 + \dfrac{{15}}{{60}} = 2 + \dfrac{1}{4} = 2\dfrac{1}{4}\) giờ.
Viết các phân số và hỗn số sau dưới dạng số thập phân:
\(\dfrac{{ - 9}}{{1\,\,000}}\)= …; \(\dfrac{{ - 5}}{8}\)= …; \(3\dfrac{2}{{25}}\)=…
\(\dfrac{{ - 9}}{{1\,\,000}} = - 0,009\)
\(\dfrac{{ - 5}}{8} = \dfrac{{ - 5.125}}{{8.125}} = \dfrac{{ - 625}}{{1000}} = - 0,625\)
\(3\dfrac{2}{{25}} = 3\dfrac{8}{{100}} = 3,08\)
Viết các số thập phân sau dưới dạng phân số tối giản:
\( - 0,125\)=…; \( - 0,012 = ...{\rm{ }}\); \( - 4,005 = ...\)
\( - 0,125 = \dfrac{{ - 125}}{{1000}} = \dfrac{{ - 125:125}}{{1000:125}} = \dfrac{{ - 1}}{8}\)
\( - 0,012 = \dfrac{{ - 12}}{{1000}} = \dfrac{{ - 12:4}}{{1000:4}} = \dfrac{{ - 3}}{{250}}\)
\( - 4,005 = \dfrac{{ - 4005}}{{1000}} = \dfrac{{ - 4005:5}}{{1000:5}} = \dfrac{{ - 801}}{{200}}\)