Điền dấu thích hợp vào chỗ chấm: \(\dfrac{{ - 12}}{{25}} \cdot \cdot \cdot \dfrac{{17}}{{ - 25}}\)
\(\dfrac{{17}}{{ - 25}} = \dfrac{{ - 17}}{{25}}\)
Vì \( - 12 > - 17\) nên \(\dfrac{{ - 12}}{{25}} > \dfrac{{ - 17}}{{25}}\) hay \(\dfrac{{ - 12}}{{25}} > \dfrac{{17}}{{ - 25}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
Ta có:
\(\begin{array}{l}5 = 5.1\\18 = {2.3^2}\\75 = {3.5^2}\end{array}\)
\( \Rightarrow BCNN\left( {5;18;75} \right) = {2.3^2}{.5^2} = 450\)
Vậy ta có thể chọn một mẫu chung là \(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
\(BCNN\) hay mẫu chung nguyên dương nhỏ nhất của hai mẫu đã cho là \({3^3}{.7^2}.11.19\)
Chọn câu sai.
Đáp án A: Ta có:
\(\dfrac{2}{{ - 3}} = \dfrac{{ - 2}}{3} = \dfrac{{ - 2.8}}{{3.8}} = \dfrac{{ - 16}}{{24}};\)\(\dfrac{{ - 7}}{8} = \dfrac{{ - 7.3}}{{8.3}} = \dfrac{{ - 21}}{{24}}\)
Vì \(\dfrac{{ - 16}}{{24}} > \dfrac{{ - 21}}{{24}}\) nên suy ra \(\dfrac{2}{{ - 3}} > \,\,\,\dfrac{{ - 7}}{8}\) nên A đúng.
Đáp án B: Ta có:
\(\dfrac{{ - 22}}{{33}} = \dfrac{{ - 22:11}}{{33:11}} = \dfrac{{ - 2}}{3};\,\,\,\,\,\,\,\,\,\dfrac{{200}}{{ - 300}} = \dfrac{{ - 200}}{{300}} = \dfrac{{ - 200:100}}{{300:100}} = \dfrac{{ - 2}}{3}\)
Vì \(\dfrac{{ - 2}}{3} = \dfrac{{ - 2}}{3}\) nên suy ra \(\dfrac{{ - 22}}{{33}} = \dfrac{{200}}{{ - 300}}\) nên B đúng.
Đáp án C: Ta có:
$ - \dfrac{2}{5} < 0\,;$$\dfrac{{196}}{{294}}\, > 0$$ \Rightarrow \dfrac{{ - 2}}{5} < 0 < \dfrac{{196}}{{294}}$ $ \Rightarrow \dfrac{{ - 2}}{5} < \,\,\,\dfrac{{196}}{{294}}$ nên C đúng.
Đáp án D: Ta có:
\(\dfrac{{39}}{{ - 65}} = \dfrac{{39:( - 13)}}{{( - 65):( - 13)}} = \dfrac{{ - 3}}{5}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\)
Vì \(\dfrac{{ - 3}}{5} = \dfrac{{ - 3}}{5}\) nên suy ra \(\dfrac{{ - 3}}{5} = \,\dfrac{{39}}{{ - 65}}\) nên D sai.
Sắp xếp các phân số \(\dfrac{{ - 3}}{4};\dfrac{1}{{12}};\dfrac{{ - 156}}{{149}}\) theo thứ tự giảm dần ta được
Dễ thấy \(\dfrac{{ - 3}}{4} < \dfrac{1}{{12}};\) \(\dfrac{{ - 156}}{{149}} < \dfrac{1}{{12}}\)
So sánh \(\dfrac{{ - 3}}{4}\) và \(\dfrac{{ - 156}}{{149}}\):
Ta có: \(\dfrac{{ - 3}}{4} = \dfrac{3}{{ - 4}} = \dfrac{{3.52}}{{ - 4.52}} = \dfrac{{156}}{{ - 208}};\) \(\dfrac{{ - 156}}{{149}} = \dfrac{{156}}{{ - 149}}\)
Vì \( - 208 < - 149\) nên \(\dfrac{{156}}{{ - 208}} > \dfrac{{156}}{{ - 149}}\) hay \(\dfrac{{ - 3}}{4} > \dfrac{{ - 156}}{{149}}\)
Vậy \(\dfrac{1}{{12}} > \dfrac{{ - 3}}{4} > \dfrac{{ - 156}}{{149}}\)
Rút gọn rồi quy đồng mẫu số các phân số \(\dfrac{{3\;.\;4 - 3\;.\;7}}{{6.5 + 9}}\) và \(\dfrac{{6\;.\;9 - 2\;.\;17}}{{63\;.\;3 - 119}}\) ta được
\(\dfrac{{3\;.\;4 - 3\;.\;7}}{{6\;.\;5 + 9}} = \dfrac{{12 - 21}}{{30 + 9}} = \dfrac{{ - 9}}{{39}} = \dfrac{{ - 3}}{{13}}\)
\(\dfrac{{6\;.\;9 - 2\;.\;17}}{{63\;.\;3 - 119}} = \dfrac{{54 - 34}}{{189 - 119}} = \dfrac{{20}}{{70}} = \dfrac{2}{7}\)
\(MSC = 91\)
\(\dfrac{{ - 3}}{{13}} = \dfrac{{ - 3.7}}{{13.7}} = \dfrac{{ - 21}}{{91}};\,\,\dfrac{2}{7} = \dfrac{{2.13}}{{7.13}} = \dfrac{{26}}{{91}}\)
Vậy sau khi quy đồng ta được hai phân số \(\dfrac{{ - 21}}{{91}}\) và \(\dfrac{{26}}{{91}}\)
Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:
Ta có:
\(\dfrac{{4.8}}{{64.\left( { - 7} \right)}} = \dfrac{{4.8}}{{2.4.8.\left( { - 7} \right)}} = \dfrac{1}{{2.\left( { - 7} \right)}} = \dfrac{{ - 1}}{{14}}\)
Cho \(A = \dfrac{{25.9 - 25.17}}{{ - 8.80 - 8.10}}\) và \(B = \dfrac{{48.12 - 48.15}}{{ - 3.270 - 3.30}}\). Chọn câu đúng.
\(A = \dfrac{{25\;.\;9 - 25\;.\;17}}{{ - 8\;.\;80 - 8.10}} = \dfrac{{25.(9 - 17)}}{{ - 8.(80 + 10)}}\)\( = \dfrac{{25.( - 8)}}{{( - 8).90}} = \dfrac{{25}}{{90}} = \dfrac{5}{{18}}\)
\(B = \dfrac{{48.12 - 48.15}}{{ - 3.270 - 3.30}} = \dfrac{{48.(12 - 15)}}{{( - 3).(270 + 30)}}\) \( = \dfrac{{48.( - 3)}}{{( - 3).300}} = \dfrac{{48}}{{300}} = \dfrac{4}{{25}}\)
Vì \(A < 1\) nên loại đáp án C.
So sánh \(A\) và \(B:\)
\(MSC = 450\)
\(\dfrac{5}{{18}} = \dfrac{{5.25}}{{18.25}} = \dfrac{{125}}{{450}};\) \(\dfrac{4}{{25}} = \dfrac{{4.18}}{{25.18}} = \dfrac{{72}}{{450}}\)
Vì \(125 > 72\) nên \(\dfrac{{125}}{{450}} > \dfrac{{72}}{{450}}\) hay \(\dfrac{5}{{18}} > \dfrac{4}{{25}}\)
Vậy \(A > B\)
Số các cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn \(\dfrac{1}{{18}} < \dfrac{x}{{12}} < \dfrac{y}{9} < \dfrac{1}{4}\) là:
\(MSC:36\)
Khi đó:
\(\dfrac{1}{{18}} < \dfrac{x}{{12}} < \dfrac{y}{9} < \dfrac{1}{4}\)\( \Rightarrow \dfrac{2}{{36}} < \dfrac{{x.3}}{{36}} < \dfrac{{y.4}}{{36}} < \dfrac{9}{{36}}\)
\( \Rightarrow 2 < x.3 < y.4 < 9\)
Mà \(\left( {x.3} \right) \vdots 3\) và \(\left( {y.4} \right) \vdots 4\) nên \(x.3 \in \left\{ {3;6} \right\}\) và \(y.4 \in \left\{ {4;8} \right\}\)
Mà \(x.3 < y.4\) nên:
+ Nếu \(x.3 = 3\) thì \(y.4 = 4\) hoặc \(y.4 = 8\)
Hay nếu \(x = 1\) thì \(y = 1\) hoặc \(y = 2\)
+ Nếu \(x.3 = 6\) thì \(y.4 = 8\)
Hay nếu \(x = 2\) thì \(y = 2\)
Vậy các cặp số nguyên \(\left( {x;y} \right)\) là \(\left( {1;1} \right),\left( {1;2} \right),\left( {2;2} \right)\)
Có bao nhiêu phân số lớn hơn \(\dfrac{1}{6}\) nhưng nhỏ hơn \(\dfrac{1}{4}\) mà có tử số là \(5.\)
Gọi phân số cần tìm là \(\dfrac{5}{x}\) $(x \in N^*)$
Ta có: \(\dfrac{1}{6} < \dfrac{5}{x} < \dfrac{1}{4}\)
\( \Rightarrow \dfrac{5}{{30}} < \dfrac{5}{x} < \dfrac{5}{{20}}\) \( \Rightarrow 30 > x > 20\) hay \(x \in \left\{ {21;22;...;29} \right\}\)
Số giá trị của \(x\) là: \(\left( {29 - 21} \right):1 + 1 = 9\)
Vậy có tất cả \(9\) phân số thỏa mãn bài toán.
Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?
\(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}} = \dfrac{{{{2.3}^2}{{.2}^2}.13}}{{2.11.\left( { - {2^3}{{.3}^2}} \right)}}\)\( = \dfrac{{{2^3}{{.3}^2}.13}}{{ - {2^4}{{.3}^2}.11}} = \dfrac{{13}}{{ - 2.11}} = \dfrac{{ - 13}}{{22}}\)
Biểu thức \(\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}}\) sau khi đã rút gọn đến tối giản có mẫu số dương là:
\(\,\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{{5^{10}}{{.3}^9}.\left( {{5^2} - {3^2}} \right)}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{{5^{10}}{{.3}^9}.16}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{16}}{3}.\)
Vậy mẫu số của phân số đó là \(3\)
Tìm một phân số có mẫu là \(13\), biết rằng giá trị của nó không thay đổi khi ta cộng tử với \( - 20\) và nhân mẫu với \(5.\)
Gọi phân số cần tìm là \(\dfrac{a}{{13}}\left( {a \in Z} \right)\)
Theo yêu cầu bài toán:
\(\begin{array}{l}\dfrac{a}{{13}} = \dfrac{{a + \left( { - 20} \right)}}{{13.5}}\\\dfrac{{a.5}}{{13.5}} = \dfrac{{a + \left( { - 20} \right)}}{{13.5}}\\a.5 = a + \left( { - 20} \right)\\a.5 - a = - 20\\a.4 = - 20\\a = \left( { - 20} \right):4\\a = - 5\end{array}\)
Vậy phân số cần tìm là \(\dfrac{{ - 5}}{{13}}\)
Sau khi rút gọn biểu thức \(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\) ta được phân số \(\dfrac{a}{b}.\) Tính tổng \(a + b.\)
\(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}} = \dfrac{{{5^{11}}{{.7}^{11}}(7 + 1)}}{{{5^{11}}{{.7}^{11}}(5.7 + 9)}} = \dfrac{8}{{44}} = \dfrac{2}{{11}}.\)
Do đó \(a = 2,b = 11\) nên \(a + b = 13\)
So sánh các phân số \(A = \dfrac{{3535.232323}}{{353535.2323}};B = \dfrac{{3535}}{{3534}};C = \dfrac{{2323}}{{2322}}\)
\(A = \dfrac{{3535.232323}}{{353535.2323}} = \dfrac{{\left( {35.101} \right).\left( {23.10101} \right)}}{{\left( {35.10101} \right).\left( {23.101} \right)}} = 1\)
\(B = \dfrac{{3535}}{{3534}} = \dfrac{{3534 + 1}}{{3534}} = \dfrac{{3534}}{{3534}} + \dfrac{1}{{3534}} = 1 + \dfrac{1}{{3534}}\)
\(C = \dfrac{{2323}}{{2322}} = \dfrac{{2322 + 1}}{{2322}} = \dfrac{{2322}}{{2322}} + \dfrac{1}{{2322}} = 1 + \dfrac{1}{{2322}}\)
Vì \(\dfrac{1}{{3534}} < \dfrac{1}{{2322}}\) nên \(B < C\)
Mà \(B > 1\) nên \(B > A\)
Vậy \(A < B < C\)
Rút gọn phân số \(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\) ta được
\(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\)\( = \dfrac{{{{\left( {{3^2}} \right)}^{14}}.{{\left( {{5^2}} \right)}^5}.{{\left( {{2^3}} \right)}^7}}}{{{{\left( {{{2.3}^2}} \right)}^{12}}.{{\left( {{5^4}} \right)}^3}.{{\left( {{2^3}.3} \right)}^3}}}\)\( = \dfrac{{{3^{28}}{{.5}^{10}}{{.2}^{21}}}}{{{2^{12}}{{.3}^{24}}{{.5}^{12}}{{.2}^9}{{.3}^3}}}\)\( = \dfrac{{{2^{21}}{{.3}^{28}}{{.5}^{10}}}}{{{2^{21}}{{.3}^{27}}{{.5}^{12}}}} = \dfrac{3}{{{5^2}}} = \dfrac{3}{{25}}\)
So sánh \(A = \dfrac{{{{2018}^{2018}} + 1}}{{{{2018}^{2019}} + 1}}\) và \(B = \dfrac{{{{2018}^{2017}} + 1}}{{{{2018}^{2018}} + 1}}\) .
Dễ thấy \(A < 1\) nên:
\(A = \dfrac{{{{2018}^{2018}} + 1}}{{{{2018}^{2019}} + 1}} < \dfrac{{\left( {{{2018}^{2018}} + 1} \right) + 2017}}{{\left( {{{2018}^{2019}} + 1} \right) + 2017}}\)\( = \dfrac{{{{2018}^{2018}} + 2018}}{{{{2018}^{2019}} + 2018}} = \dfrac{{2018.\left( {{{2018}^{2017}} + 1} \right)}}{{2018.\left( {{{2018}^{2018}} + 1} \right)}}\)\( = \dfrac{{{{2018}^{2017}} + 1}}{{{{2018}^{2018}} + 1}} = B\)
Vậy \(A < B\)
So sánh \(A = \dfrac{{{2^5}.7 + {2^5}}}{{{2^5}{{.5}^2} - {2^5}.3}}\) và \(B = \dfrac{{{3^4}.5 - {3^6}}}{{{3^4}.13 + {3^4}}}\) với \(1.\)
\(\dfrac{{{2^5}.7 + {2^5}}}{{{2^5}{{.5}^2} - {2^5}.3}} = \dfrac{{{2^5}.(7 + 1)}}{{{2^5}.({5^2} - 3)}}\)\( = \dfrac{{{2^5}.(7 + 1)}}{{{2^5}.(25 - 3)}} = \dfrac{{{2^5}.8}}{{{2^5}.22}} = \dfrac{8}{{22}} = \dfrac{4}{{11}}\)
\(\dfrac{{{3^4}.5 - {3^6}}}{{{3^4}.13 + {3^4}}} = \dfrac{{{3^4}.(5 - {3^2})}}{{{3^4}.(13 + 1)}}\) \( = \dfrac{{{3^4}.(5 - 9)}}{{{3^4}.14}} = \dfrac{{{3^4}.( - 4)}}{{{3^4}.14}} = \dfrac{{ - 4}}{{14}} = \dfrac{{ - 2}}{7}\)
\(MSC = 77\)
\(\dfrac{4}{{11}} = \dfrac{{4.7}}{{11.7}} = \dfrac{{28}}{{77}};\) \(\dfrac{{ - 2}}{7} = \dfrac{{ - 2.11}}{{7.11}} = \dfrac{{ - 22}}{{77}}\)
Do đó \(\dfrac{{ - 22}}{{77}} < \dfrac{{28}}{{77}} < 1\) hay \(B < A < 1\).
Tìm phân số tối giản \(\dfrac{a}{b}\) biết rằng lấy tử cộng với \(6,\) lấy mẫu cộng với \(14\) thì ta được phân số bằng \(\dfrac{3}{7}.\)
Ta có:
\(\begin{array}{l}\dfrac{{a + 6}}{{b + 14}} = \dfrac{3}{7}\\7.(a + 6) = 3.(b + 14)\\7{\rm{a}} + 42 = 3b + 42\\7{\rm{a}} = 3b\\\dfrac{a}{b} = \dfrac{3}{7}\end{array}\)
Quy đồng mẫu hai phân số \(\dfrac{3}{4}\) và \(\dfrac{4}{5}\) ta được kết quả là
Để quy đồng mẫu hai phân số \(\dfrac{3}{4}\) và \(\dfrac{4}{5}\), ta làm như sau:
- Tìm mẫu chung: BCNN(4, 5) = 20;
- Tìm thừa số phụ: 20 : 4 = 5 và 20 : 5 = 4;
- Ta có:
\(\dfrac{3}{4} = \dfrac{{3.5}}{{4.5}} = \dfrac{{15}}{{20}}\) và \(\dfrac{4}{5} = \dfrac{{4.4}}{{5.4}} = \dfrac{16}{{20}}\)