Các dạng toán về dấu hiệu chia hết cho 3, cho 9

Sách kết nối tri thức với cuộc sống

Đổi lựa chọn

Câu 1 Trắc nghiệm

Cho số \(A = \overline {a785b} \) . Tìm tổng các chữ số $a$  và $b$  sao cho $A$  chia $9$  dư $2.$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(a;\,\,b\,\,\, \in \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,9} \right\}\) và \(a \ne 0.\)

A chia $9$  dư $2$  \( \Rightarrow a + 7 + 8 + 5 + b = a + b + 20\) chia $9$  dư $2$ hay \(\left( {a + b + 18} \right)\,\, \vdots \,\,9\) .

Mà \(18 \, \vdots \, 9 \Rightarrow \left( {a + b} \right) \, \vdots \, 9 \Rightarrow \left( {a + b} \right) \in \left\{ {9;18} \right\}\).

Câu 2 Trắc nghiệm

Tìm chữ số \(b\) để số $\overline {b9576} $ chia hết cho \(3\).

Bạn đã chọn sai | Đáp án đúng:

C. \(b = 3\,;\,\,6\,;\,\,\,9\)

Bạn đã chọn đúng | Đáp án đúng:

C. \(b = 3\,;\,\,6\,;\,\,\,9\)

Bạn chưa làm câu này | Đáp án đúng:

C. \(b = 3\,;\,\,6\,;\,\,\,9\)

Để số $\overline {b9576} $ chia hết cho \(3\) thì tổng các chữ số của số phải chia hết cho \(3\), hay

               \(\begin{array}{l}(b + 9 + 5 + 7 + 6)\,\, \vdots \,\,3\\(b + 27)\,\, \vdots \,\,3\\ \Rightarrow b = 0\,\,;\,\,3\,\,;\,\,6\,\,;\,\,9\end{array}\)  

Vì \(b\) là chữ  số hàng chục nghìn nên \(b \ne 0\), do đó \(b = 3\,;\,\,6\,;\,\,\,9\).

Vậy để số $\overline {b9576} $ chia hết cho \(3\) thì \(b = 3\,;\,\,6\,;\,\,\,9\).

Câu 3 Trắc nghiệm

Cho số \(N = \overline {5a27b} \) .Có bao nhiêu số  N sao cho N  là số có $5$ chữ số khác nhau và N chia cho $3$ thì dư $2,$  N chia cho $5$ thì dư $1$ và N chia hết cho $2.$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Điều kiện: \(a;\,\,b \in \left\{ {0;\,\,1;\,\,2;\,\,.......;\,\,9} \right\}\)

\(N = \overline {5a27b} \) chia 5 dư 1 nên \(b \in \left\{ {1;6} \right\}\) .

Mà N chia hết cho 2 nên \(b = 6\) , ta được số \(N = \overline {5a276} \) .

Vì N chia 3 dư 2 nên \(5 + a + 2 + 7 + 6 = 20 + a\) chia $3$ dư $2.$ Suy ra \(\left( {18 + a} \right)\,\, \vdots \,\,3\) .

Mà \(18 \vdots 3 \Rightarrow a \vdots 3 \Rightarrow a \in \left\{ {0;3;6;9} \right\}\) (do $a$  là chữ số).

Lại có $N$ là số có $5$ chữ số khác nhau nên \(a \in \left\{ {0;3;9} \right\}\) .

Vậy có ba số $N$ thỏa mãn là các số $50276;53276;59276$.

Câu 4 Trắc nghiệm

Tìm các chữ số $x, y$ biết rằng: \(\overline {23x5y} \) chia hết cho $2; 5$ và $9.$

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: \(x; y \in \left\{ {0;\,\,1;\,\,2;\,\,.......;\,\,9} \right\}\)

Vì \(\overline {23x5y} \) chia hết cho cả $2$ và $5$ nên \(y = 0\) ta được số \(\overline {23x50} \) .

Số \(\overline {23x50} \,\, \vdots \,\,9 \Rightarrow \left( {2 + 3 + x + 5 + 0} \right)\,\, \vdots \,\,9 \Rightarrow \left( {10 + x} \right)\,\, \vdots \,\,9 \Rightarrow x = 8.\)

Vậy \(x = 8;y = 0\), ta có số $23850.$

Câu 5 Trắc nghiệm

Có bao nhiêu số tự nhiên dạng \(\overline {5a42b} \) chia hết cho cả \(2;5\) và \(3?\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì số \(\overline {5a42b} \) chia hết cho cả \(2;5\) nên \(b = 0.\)

Để \(\overline {5a42b} \) chia hết cho \(3\) thì \(5 + a + 4 + 2 + 0 = 11 + a\) chia hết cho \(3.\)

Suy ra \(a \in \left\{ {1;4;7} \right\}\).

Vậy có ba số tự nhiên thỏa mãn là \(51420;54420;57420.\)

Câu 6 Tự luận

Điền số thích hợp vào ô trống:

Biết \(3021 < x < 3026\) và \(x\) chia hết cho \(9\)  . Vậy \(x=\) 

Câu hỏi tự luận
Bạn chưa làm câu này

Biết \(3021 < x < 3026\) và \(x\) chia hết cho \(9\)  . Vậy \(x=\) 

Số cần điền lớn hơn \(3021\)  và nhỏ hơn \(3026\) nên số cần điền chỉ có thể là \(3022\,;\,\,3023\,;\,\,3024;\,\,3025\).
Số \(3022\) có tổng các chữ số là \(7\). Vì \(7\) không chia hết cho \(9\) nên \(3022\) không chia hết cho \(9\).

Số \(3023\) có tổng các chữ số là \(8\). Vì \(8\) không chia hết cho \(9\) nên \(3023\) không chia hết cho \(9\).

Số \(3024\) có tổng các chữ số là \(9\). Vì \(9\) chia hết cho \(9\) nên \(3024\) chia hết cho \(9\).

Số \(3025\) có tổng các chữ số là \(10\). Vì \(10\) không chia hết cho \(9\) nên \(3025\) không chia hết cho \(9\).
Vậy đáp án đúng điền vào ô trống là \(3024\).

Câu 7 Tự luận

Điền số thích hợp vào ô trống:

Biết \(921 < x < 925\) và \(x\) chia hết cho \(3\). Vậy \(x=\) 

Câu hỏi tự luận
Bạn chưa làm câu này

Biết \(921 < x < 925\) và \(x\) chia hết cho \(3\). Vậy \(x=\) 

Số cần điền lớn hơn \(921\) và nhỏ hơn \(925\) nên số cần điền chỉ có thể là \(922\,;\,\,923\,;\,\,924\).
Số \(922\) có tổng các chữ số là \(13\). Vì \(13\) không chia hết cho \(3\) nên \(922\) không chia hết cho \(3\).

Số \(923\) có tổng các chữ số là \(14\). Vì \(14\) không chia hết cho \(3\) nên \(923\) không chia hết cho \(3\).

Số \(924\) có tổng các chữ số là \(15\). Vì \(15\) chia hết cho \(3\) nên \(924\) chia hết cho \(3\).

Vậy đáp án đúng điền vào ô trống là \(924\).

Câu 8 Trắc nghiệm

Dùng ba trong bốn chữ số \(5;8;4;0\) hãy lập ra các số tự nhiên chia hết cho \(3\) mà không chia hết cho \(9.\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta thấy chỉ có \(8 + 4 + 0 = 12\) chia hết cho \(3\) nhưng không chia hết cho \(9\) nên các số cần tìm là \(840;480;408;804.\)

Câu 9 Tự luận

Điền số thích hợp vào ô trống:

Để số $\overline {2a65} $ chia hết cho \(9\) thì \(a=\)

Câu hỏi tự luận
Bạn chưa làm câu này

Để số $\overline {2a65} $ chia hết cho \(9\) thì \(a=\)

Để số $\overline {2a65} $ chia hết cho \(9\) thì tổng các chữ số của số phải chia hết cho \(9\), hay

               \(\begin{array}{l}(2 + a + 6 + 5)\,\, \vdots \,\,9\\(a + 13)\,\, \vdots \,\,9\\ \Rightarrow a = 5\end{array}\)  

Vậy để số $\overline {2a65} $ chia hết cho \(9\) thì \(a = 5\).

Đáp án đúng điền vào ô trống là \(5\).

Câu 10 Trắc nghiệm

Có bao nhiêu cặp số \(a;b\) sao cho số \(\overline {52ab} \) chia hết cho \(9\) và chia cho \(5\) dư \(2.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì \(\overline {52ab} \) chia cho \(5\) dư \(2\) nên \(b \in \left\{ {2;7} \right\}\)

+ Xét \(b = 2\) ta có \(\overline {52a2}  \, \vdots \, 9 \Rightarrow 5 + 2 + a + 2 = \left( {9 + a} \right) \, \vdots \, 9\) suy ra \(a \in \left\{ {0;9} \right\}\)

+ Xét \(b = 7\) ta có \(\overline {52a7}  \, \vdots \, 9 \Rightarrow 5 + 2 + a + 7 = \left( {14 + a} \right) \, \vdots \, 9\) suy ra \(a \in \left\{ 4 \right\}\)

Vậy \(a = 0;b = 2\) hoặc \(a = 9;b = 2\) hoặc \(a = 4;b = 7.\)

Câu 11 Trắc nghiệm

Thay \(x\) bằng chữ số thích hợp để số \(\overline {x6257} \) chia cho \(3\) dư \(1\) .

Bạn đã chọn sai | Đáp án đúng:

D. \(x = 2\,\,;5\,\,;\,\,8\)

Bạn đã chọn đúng | Đáp án đúng:

D. \(x = 2\,\,;5\,\,;\,\,8\)

Bạn chưa làm câu này | Đáp án đúng:

D. \(x = 2\,\,;5\,\,;\,\,8\)

Tổng các chữ số của số  \(\overline {x6257}\) là:    \(x + 6 + 2 + 5 + 7 = x + 20\).
Để số \(\overline {x6257} \) chia hết cho \(3\) thì tổng các chữ số phải chia hết cho \(3\), hay \(x + 20\) chia hết cho \(3\).

Suy ra \(20 + x = 21 \,\,;\,\,\,20 + x = 24\) hoặc \(20 + x = 27\).
Để \(\overline {x6257} \) chia \(3\) dư 1 thì tổng các chữ số chia cho \(3\) cũng dư \(1\) . Do đó \(20 + x = 22\,\,;\,\,\,20 + x = 25\) hoặc \(20 + x = 28\).

Ta có bảng sau:

Vậy để số \(\overline {x6257} \) chia cho \(3\) dư \(1\) thì \(x = 2\,;\,\,5\,;\,\,8\).

Câu 12 Trắc nghiệm

Số \(A = \overline {abcd}  - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(A = \overline {abcd}  - \left( {a + b + c + d} \right)\)\( = 1000a + 100b + 10c + d - \left( {a + b + c + d} \right)\)

\( = 999a + 99b + 9c + \left( {a + b + c + d} \right) - \left( {a + b + c + d} \right)\)

\( = 999a + 99b + 9c\)

Mà \(999 \, \vdots \, 9;\,99 \, \vdots \, 9;\,9 \, \vdots \, 9\) nên \(A \, \vdots \, 9.\)

Câu 13 Tự luận

Điền số thích hợp vào ô trống:

Từ bốn chữ số ${\rm{ 3}}\,\,{\rm{;}}\,\,5{\rm{; 6;}}\,\,{\rm{9}}$ có thể viết được  tất cả   

số có ba chữ số khác nhau và chia hết cho \(3\).

Câu hỏi tự luận
Bạn chưa làm câu này

Từ bốn chữ số ${\rm{ 3}}\,\,{\rm{;}}\,\,5{\rm{; 6;}}\,\,{\rm{9}}$ có thể viết được  tất cả   

số có ba chữ số khác nhau và chia hết cho \(3\).

Để lập được số chia hết cho \(3\) thì các số đó phải có tổng các chữ số chia hết cho \(3\).

Ta có :

\(3 + 5 + 6 = 14\) ; \(14\) không chia hết cho \(3\).

\(3 + 5 + 9 = 17\) ; \(17\) không chia hết cho \(3\).

\(3 + 6 + 9 = 18\) ; \(18\) chia hết cho \(3\).

\(5 + 6 + 9 = 20\) ; \(20\) không chia hết cho \(3\).

Do đó các số có \(3\) chữ số chia hết cho \(3\) được lập từ bốn chữ số ${\rm{ 3}}\,\,{\rm{;}}\,\,5{\rm{; 6;}}\,\,{\rm{9}}$ sẽ gồm các chữ số \(3\,;\,\,6\,;\,\,9\).

Từ ba chữ số $3;{\rm{ 6; 9}}$ ta viết được các số có ba chữ số khác nhau và chia hết cho \(3\) là:

\(369\,;\,\,396\,;\,\,639\,;\,\,693\,;\,\,936\,;\,\,963\).

Có \(6\) số có ba chữ số khác nhau và chia hết cho \(3\).
Vậy đáp án đúng điền vào ô trống là \(6\).

Câu 14 Tự luận

Điền số thích hợp vào ô trống:

Từ bốn chữ số $0;{\rm{ 1}}{\rm{;}}\,{\rm{3; 5}}$ có thể viết được tất cả 

số có ba chữ số khác nhau và chia hết cho \(9\).

Câu hỏi tự luận
Bạn chưa làm câu này

Từ bốn chữ số $0;{\rm{ 1}}{\rm{;}}\,{\rm{3; 5}}$ có thể viết được tất cả 

số có ba chữ số khác nhau và chia hết cho \(9\).

Để lập được số chia hết cho \(9\) thì các số đó phải có tổng các chữ số chia hết cho \(9\).

Ta có:

\(0 + 1 + 3 = 4\); \(4\) không chia hết cho \(9\).

\(0 + 1 + 5 = 6\); \(6\) không chia hết cho \(9\).

\(0 + 3 + 5 = 8\); \(8\) không chia hết cho \(9\).

\(1 + 3 + 5 = 9\); \(9\) chia hết cho \(9\).

Do đó các số có \(3\) chữ số chia hết cho \(9\) được lập từ bốn chữ số $0;{\rm{ 1;\, 3;\,5}}$ sẽ gồm các chữ số \(1\,;\,\,3\,;\,\,5\).

Từ ba chữ số $1;{\rm{ 3; 5}}$ ta viết được các số có ba chữ số khác nhau và chia hết cho \(9\) là:

\(135\,;\,\,153\,;\,\,315\,;\,\,351\,;\,\,513\,;\,\,531\).

Có \(6\) số có ba chữ số khác nhau và chia hết cho \(9\).
Vậy đáp án đúng điền vào ô trống là \(6\).

Câu 15 Trắc nghiệm

Cho \(\overline {1a52} \) chia hết cho 9. Số thay thế cho \(a\) có thể là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tổng các chữ số của \(\overline {1a52} \) là \(1 + a + 5 + 2 = a + 8\) để số \(\overline {1a52} \) chia hết cho 9 thì \(a + 8\) phải chia hết cho 9.

Do a là các số tự nhiên từ 0 đến 9 nên

\(\begin{array}{l}0 + 8 \le a + 8 \le 9 + 8\\ \Rightarrow 8 \le a + 8 \le 17\end{array}\)

Số chia hết cho 9 từ 8 đến 17 chỉ có đúng một số 9, do đó \(a + 8 = 9 \Rightarrow a = 1\)

Vậy số thay thế cho a chỉ có thể là 1

Câu 16 Trắc nghiệm

Số vừa chia hết cho 2 vừa chia hết cho 9 là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Số chia hết cho 2 là: 10008, 152 và 2156

10008 có tổng các chữ số bằng 9 nên 10008 chia hết cho 9.

Câu 17 Trắc nghiệm

Cho \(\overline {55a62} \) chia hết cho 3. Số thay thế cho \(a\) có thể là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Tổng các chữ số của \(\overline {55a62} \) là \(5 + 5 + a + 6 + 2 = a + 18\) để số \(\overline {55a62} \) chia hết cho 3 thì \(a + 18\) phải chia hết cho 3.

Do a là các số tự nhiên từ 0 đến 9 nên

\(\begin{array}{l}0 + 18 \le a + 18 \le 9 + 18\\ \Rightarrow 18 \le a + 18 \le 27\end{array}\)

Số chia hết cho 3 từ 18 đến 27 có thể là các số: 18, 21, 24, 27

Tức là \(a + 18\) có thể nhận các giá trị: 18, 21, 24, 27

Với \(a + 18\) bằng 18 thì \(a = 18 - 18 = 0\)

Với \(a + 18\) bằng 21 thì \(a = 21 - 18 = 3\)

Với \(a + 18\) bằng 24 thì \(a = 24 - 18 = 6\)

Với \(a + 18\) bằng 27 thì \(a = 27 - 18 = 9\)

Vậy số có thể thay thế cho a là một trong các số 0;3;6;9.

Vậy số thay thế cho a trong đề bài chỉ có thể là 3