Cho số \(N = \overline {5a27b} \) .Có bao nhiêu số N sao cho N là số có $5$ chữ số khác nhau và N chia cho $3$ thì dư $2,$ N chia cho $5$ thì dư $1$ và N chia hết cho $2.$
Trả lời bởi giáo viên
Điều kiện: \(a;\,\,b \in \left\{ {0;\,\,1;\,\,2;\,\,.......;\,\,9} \right\}\)
\(N = \overline {5a27b} \) chia 5 dư 1 nên \(b \in \left\{ {1;6} \right\}\) .
Mà N chia hết cho 2 nên \(b = 6\) , ta được số \(N = \overline {5a276} \) .
Vì N chia 3 dư 2 nên \(5 + a + 2 + 7 + 6 = 20 + a\) chia $3$ dư $2.$ Suy ra \(\left( {18 + a} \right)\,\, \vdots \,\,3\) .
Mà \(18 \vdots 3 \Rightarrow a \vdots 3 \Rightarrow a \in \left\{ {0;3;6;9} \right\}\) (do $a$ là chữ số).
Lại có $N$ là số có $5$ chữ số khác nhau nên \(a \in \left\{ {0;3;9} \right\}\) .
Vậy có ba số $N$ thỏa mãn là các số $50276;53276;59276$.
Hướng dẫn giải:
Để giải bài toán tìm các chữ số chưa biết của một số, biết số đó chia hết hoặc chia dư cho một vài số cho trước, ta sử dụng các dấu hiệu chia hết, ưu tiên các dấu hiệu cho biết 1 (hoặc 2, 3) chữ số tận cùng (2, 5, 4, 25, 8, 125).