Các dạng toán về số nguyên tố

Sách kết nối tri thức với cuộc sống

Đổi lựa chọn

Câu 1 Trắc nghiệm

Thay dấu * để được số nguyên tố $\overline {3*} $:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đáp án A: Vì $37$  chỉ chia hết cho \(1\) và \(37\) nên \(37\) là số nguyên tố, do đó chọn A.

Đáp án B: $34$  không phải là số nguyên tố ($34$  chia hết cho $\left\{ {2;{\rm{ }}4;{\rm{ }} \ldots } \right\}$). Do đó loại B.

Đáp án C: $36$  không phải là số nguyên tố ($36$ chia hết cho $\left\{ {1;\,\,2;{\rm{ 3;}}\,...;\,{\rm{36}}} \right\}$). Do đó loại C.

Đáp án D: $39$  không phải là số nguyên tố ($39$ chia hết cho $\left\{ {1;\,\,3;...\,;\,39} \right\}).$ Do đó loại D.

Câu 2 Trắc nghiệm

Cho ${a^2}.b.7 = 140$ với \(a,b\) là các số nguyên tố, vậy \(a\) có giá trị là bao nhiêu:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Suy ra $140 = {2^2}.5.7 = {a^2}.b.7$ nên \(a = 2\).

Câu 3 Trắc nghiệm

Cho số ${\rm{150 = 2}}{\rm{.3}}{\rm{.}}{{\rm{5}}^2}$, số lượng ước của $150$  là bao nhiêu:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có ${\rm{150 = 2}}{\rm{.3}}{\rm{.}}{{\rm{5}}^2}$, vậy $x = 1;y = 1;z = 2$

Vậy số lượng ước của số $150$  là $\left( {1 + 1} \right)\left( {1 + 1} \right)\left( {2 + 1} \right) = 2.2.3 = 12$

Câu 4 Trắc nghiệm

Cho các số \(21;77;71;101\). Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

+ Số \(21\) có các ước \(1;3;7;21\) nên \(21\) là hợp số

+ Số \(77\) có các ước \(1;7;11;77\) nên \(77\) là hợp số

+ Số \(71\) chỉ có hai ước là \(1;71\) nên \(71\) là số nguyên tố.

+ Số \(101\) chỉ có hai ước là \(1;101\) nên \(101\) là số nguyên tố.

Như vậy có hai số nguyên tố là \(71;101\) và hai hợp số là \(21;77.\)

Câu 5 Trắc nghiệm

Khi phân tích các số \(2150;1490;2340\) ra thừa số nguyên tố thì số nào có chứa tất cả các thừa số nguyên tố \(2;3\) và \(5?\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

+) Phân tích số \(2150\) thành thừa số nguyên tố

Suy ra \(2150 = {2.5^2}.43\)

+) Phân tích số \(1490\) thành thừa số nguyên tố

Suy ra \(1490 = 2.5.149\)

+) Phân tích số \(2340\) thành thừa số nguyên tố

Suy ra \(2340 = {2^2}{.3^2}.5.13\)

Vậy có số \(2340\) thỏa mãn yêu cầu đề bài.

Câu 6 Trắc nghiệm

Cho \(A = 90.17 + 34.40 + 12.51\) và \(B = 5.7.9 + 2.5.6\) . Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Ta có \(A = 90.17 + 34.40 + 12.51\)

Nhận thấy \(17 \, \vdots \, 17;\,34 \, \vdots \,  17;51 \, \vdots \, 17\) nên \(A = 90.17 + 34.40 + 12.51\) chia hết cho \(17\) nên ngoài ước là \(1\) và chính nó thì \(A\) còn có ước là \(17\). Do đó \(A\) là hợp số.

+) Ta có \(B = 5.7.9 + 2.5.6 = 5.\left( {7.9 + 2.6} \right) \, \vdots \, 5\) nên \(B = 5.7.9 + 2.5.6\) ngoài ước là \(1\) và chính nó thì \(A\) còn có ước là \(5\). Do đó \(B\) là hợp số.

Vậy cả \(A\) và \(B\) đều là hợp số.

Câu 7 Trắc nghiệm

Tích của hai số tự nhiên bằng \(105.\) Có bao nhiêu cặp số thỏa mãn?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi hai số tự nhiên cần tìm là \(a\) và \(b\left( {a;b \in N} \right)\)

Ta có \(a.b = 105\)

Phân tích số \(105\) ra thừa số nguyên tố ta được \(105 = 3.5.7\)

Các số \(a;b\) là ước của \(105\) , do đó ta có

Vậy có \(8\) cặp số thỏa mãn yêu cầu.

Câu 8 Trắc nghiệm

Tổng của $3$ số nguyên tố là $578.$ Tìm ra số nguyên tố nhỏ nhất trong $3$ số nguyên tố đó.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tổng $3$ số nguyên tố là $578$ là số chẵn, nên trong $3$ số nguyên tố có ít nhất $1$ số là số chẵn. Ta đã biết số $2$ là số nguyên tố chẵn duy nhất. Vậy số nguyên tố nhỏ nhất trong $3$ số nguyên tố có tổng là $578$ là số $2.$

Câu 9 Trắc nghiệm

Số $360$ khi phân tích được thành thừa số nguyên tố, hỏi tích đó có bao nhiêu thừa số là số nguyên tố?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có

Nên \(360 = {2^3}{.3^2}.5\)

Vậy có  thừa số nguyên tố sau khi phân tích là $2; 3$ và $5.$

Câu 10 Trắc nghiệm

Có bao nhiêu số nguyên tố \(x\) thỏa mãn \(50 < x < 60?\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Các số \(x\) thỏa mãn \(50 < x < 60\) là \(51;52;53;54;55;56;57;58;59\)

Trong đó các số nguyên tố là \(53;59.\)

Vậy có hai số nguyên tố thỏa mãn đề bài.

Câu 11 Trắc nghiệm

Tìm tất cả các số tự nhiên \(n\) để \({n^2} + 12n\) là số nguyên tố.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \({n^2} + 12n = n\left( {n + 12} \right);\,n + 12 > 1\) nên để \({n^2} + 12n\) là số nguyên tố thì \(n = 1.\)

Thử lại \({n^2} + 12n = {1^2} + 12.1 = 13\) (nguyên tố)

Vậy với \(n = 1\) thì \({n^2} + 12n\) là số nguyên tố.

Câu 12 Trắc nghiệm

Có bao nhiêu số nguyên tố \(p\) sao cho \(p + 4\) và \(p + 8\) cũng là số nguyên tố.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đặt \(p = 3a + r\,\,\left( {r = 0;1;2;\,a \in N} \right)\)

Với \(r = 1\) ta có \(p + 8 = 3a + r + 8 = \left( {3a + 9} \right) \vdots 3,\,\left( {3a + 9} \right) > 3\) nên \(p + 8\) là hợp số. Do đó loại \(r = 1.\)

Với \(r = 2\) ta có \(p + 4 = 3a + r + 4 = \left( {3a + 6} \right) \vdots 3,\,\left( {3a + 6} \right) > 3\) nên \(p + 4\) là hợp số. Do đó loại \(r = 2.\)

Do đó \(r = 0;p = 3a\) là số nguyên tố nên \(a = 1 \Rightarrow p = 3.\)

Ta có \(p + 4 = 7;p + 8 = 11\) là các số nguyên tố.

Vậy \(p = 3.\)

Có một số nguyên tố \(p\) thỏa mãn đề bài.

Câu 13 Trắc nghiệm

Cho nguyên tố \(p\) chia cho \(42\) có số dư \(r\) là hợp số. Tìm \(r.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(p = 42.a + r = 2.3.7.a + r\,\left( {a,r \in N;0 < r < 42} \right)\)

Vì \(p\) là số nguyên tố nên \(r\) không chia hết cho \(2;3;7.\)

Các hợp số nhỏ hơn \(42\) không chia hết cho \(2\) là \(9;15;21;25;27;33;35;39\)

Loại bỏ các số chia hết cho \(3\) và \(7\) ta còn số \(25.\)

Vậy \(r = 25.\)

Câu 14 Trắc nghiệm

Nếu cho 7 hình vuông đơn vị ghép thành hình chữ nhật thì có mấy cách xếp (Không kể việc xoay chiều dài và chiều rộng)?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Nếu xếp 7 hình vuông đơn vị thành hình chữ nhật thì chiều rộng của hình chữ nhật chỉ có thể xếp:

 

Câu 15 Trắc nghiệm

Số nguyên tố nhỏ hơn 30 là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Các số nguyên tố nhỏ hơn 30 là:  2;3;5;7;9;11;13;17;19;23;29.

Số cần tìm là 23.

Câu 16 Trắc nghiệm

Một ước nguyên tố của 91 là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

91 có tổng các chữ số bằng 10 không chia hết cho 3 nên 3 không là ước nguyên tố của 91

91 có chữ số tận cùng là 1 nên 91 không chia hết cho 2, do đó 2 không là ước nguyên tố.

Một ước số nguyên tố của 91 là: 7.

Câu 17 Trắc nghiệm

Số các ước của số $192$ là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có

Nên \(192= 2^6 . 3\) nên số ước của $192$ là \((6+1)(1+1)=14\) ước.

Câu 18 Trắc nghiệm

Một hình vuông có diện tích là \(1936\,{m^2}.\) Tính cạnh của hình vuông đó.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Phân tích số \(1936\) ra thừa số nguyên tố ta được

Hay \(1936 = {2^4}{.11^2} = \left( {{2^2}.11} \right).\left( {{2^2}.11} \right) = 44.44\)

Vậy cạnh hình vuông bằng \(44\,m.\)

Câu 19 Trắc nghiệm

Cho phép tính \(\overline {ab} .\,c\, = 424.\) Khi đó \(c\) bằng bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì \(\overline {ab} .\,c\, = 424\) nên \(\overline {ab} \) là ước có hai chữ số của \(424.\)

Phân tích số \(424\) ra thừa số nguyên tố ta được

Hay \(424 = {2^3}.53\)

Các ước của \(424\) là \(1;2;4;8;53;106;212;424\)

Suy ra \(\overline {ab}  = 53\) suy ra \(c = 424:53 = 8.\)