Câu hỏi:
2 năm trước
Có bao nhiêu số nguyên \(n\) thỏa mãn \(\left( {n - 1} \right)\) là bội của \(\left( {n + 5} \right)\) và \(\left( {n + 5} \right)\) là bội của \(\left( {n - 1} \right)?\)
Trả lời bởi giáo viên
Đáp án đúng: c
Vì \(\left( {n - 1} \right)\) là bội của \(\left( {n + 5} \right)\) và \(\left( {n + 5} \right)\) là bội của \(n - 1\),
Nên \(n - 1\) khác \(0\) và \(n + 5\) khác \(0\)
Nên \(n + 5,n - 1\) là hai số đối nhau
Do đó:
\((n + 5) + (n - 1) = 0\)
\(2n + 5 - 1 = 0\)
\(2n + 4 = 0\)
\(2n = -4\)
\(n=-2\)
Vậy có 1 số nguyên n thỏa mãn bài toán.
Hướng dẫn giải:
Áp dụng: \(b\) chia hết cho \(a\) và \(a\) chia hết cho \(b\) thì \(a\),\(b\) là hai số đối nhau (đã chứng minh từ bài tập trước), từ đó suy ra \(n\).