Bài toán tiếp tuyến của đồ thị và sự tiếp xúc của hai đường cong
Kỳ thi ĐGTD ĐH Bách Khoa
Cho hàm số $\left( {{C_m}} \right):y = {x^3} + m{x^2} - 9x - 9m.$ Tìm $m$ để $\left( {{C_m}} \right)$ tiếp xúc với $Ox$:
Để đồ thị hàm số $\left( {{C_m}} \right)$ tiếp xúc với trục $Ox$ thì phương trình hoành độ giao điểm phải có hai nghiệm phân biệt.
Ta có: $y = 0 \Leftrightarrow {x^3} + m{x^2} - 9x - 9m = 0(1)$
$ \Leftrightarrow \left( {x + m} \right)\left( {{x^2} - 9} \right) = 0$
$ \Leftrightarrow \left[ \begin{gathered} x = - m \hfill \\x = \pm 3 \hfill \\ \end{gathered} \right.$
Để $(1)$ có $2$ nghiệm phân biệt $ \Leftrightarrow m = \pm 3.$
Gọi \(S\) là tập hợp các giá trị nguyên của \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - \left( {m - 1} \right){x^2} + \left( {m - 1} \right)x + 5\) đều có hệ số góc dương. Số phần tử của tập \(S\) là:
Gọi \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.
Ta có \(y' = 3{x^2} - 2\left( {m - 1} \right)x + m - 1\).
Suy ra hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm \(M\) là \(k = y'\left( {{x_0}} \right) = 3x_0^2 - 2\left( {m - 1} \right){x_0} + m - 1\).
Theo bài ra ta có:
\(\begin{array}{l}k > 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow 3x_0^2 - 2\left( {m - 1} \right){x_0} + m - 1 > 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}3 > 0\,\,\left( {luon\,\,dung} \right)\\\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 1} \right) < 0\,\end{array} \right.\,\forall x \in \mathbb{R}\\ \Leftrightarrow {m^2} - 2m + 1 - 3m + 3 < 0\\ \Leftrightarrow {m^2} - 5m + 4 < 0\\ \Leftrightarrow 1 < m < 4\end{array}\)
Mà \(m \in \mathbb{Z} \Rightarrow S = \left\{ {2;3} \right\}\).
Vậy tập hợp \(S\) có 2 phần tử.
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\). Đồ thị hàm số có hai đường tiệm cận là \(x = 2\) và \(y = 2\).
Ta có \(y' = \dfrac{{ - 2}}{{{{\left( {x - 2} \right)}^2}}}\). Gọi \(M\left( {m;\,\dfrac{{2m - 2}}{{m - 2}}} \right)\) thuộc đồ thị hàm số.
Phương trình tiếp tuyến \(d\) của \(\left( C \right)\) tại \(M\): \(y = \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {x - m} \right) + \dfrac{{2m - 2}}{{m - 2}}\).
Cho \(x = 2 \Rightarrow y = \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {2 - m} \right) + \dfrac{{2m - 2}}{{m - 2}}\)\( \Leftrightarrow y = \dfrac{2}{{m - 2}} + \dfrac{{2m - 2}}{{m - 2}} = \dfrac{{2m}}{{m - 2}}\).
\( \Rightarrow \) Giao điểm của \(d\) và đường thẳng \(x = 2\) là \(A\left( {2;\,\dfrac{{2m}}{{m - 2}}} \right)\).
Cho \(y = 2 \Rightarrow \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {x - m} \right) + \dfrac{{2m - 2}}{{m - 2}} = 2\).
\(\begin{array}{l} \Leftrightarrow - 2\left( {x - m} \right) + \left( {2m - 2} \right)\left( {m - 2} \right) = 2{\left( {m - 2} \right)^2}\\ \Leftrightarrow - 2x + 2m + 2{m^2} - 6m + 4 = 2{m^2} - 8m + 8\\ \Leftrightarrow 2x = 4m - 4 \Leftrightarrow x = 2m - 2\end{array}\)
\( \Rightarrow \) Giao điểm của \(d\) và đường thẳng \(y = 2\) là \(B\left( {2m - 2;\,2} \right)\).
Ta có: \(AB = 2\sqrt 5 \Leftrightarrow {\left( {2m - 4} \right)^2} + {\left( {2 - \dfrac{{2m}}{{m - 2}}} \right)^2} = 20\)
\(\begin{array}{l} \Leftrightarrow 4{\left( {m - 2} \right)^2} + \dfrac{{16}}{{{{\left( {m - 2} \right)}^2}}} = 20\\ \Leftrightarrow {\left( {m - 2} \right)^4} - 5{\left( {m - 2} \right)^2} + 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{\left( {m - 2} \right)^2} = 1\\{\left( {m - 2} \right)^2} = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 3\\m = 1\\m = 4\\m = 0\end{array} \right.\end{array}\)
Vậy \(S = 3 + 1 + 4 + 0 = 8\).
Cho các hàm số $y = f (x), y = g (x), y = \dfrac{{f\left( x \right) + 3}}{{g\left( x \right) + 1}}$ . Hệ số góc của các tiếp tuyến của đồ thị các hàm số đã cho tại điểm có hoành độ $x = 1$ bằng nhau và khác $0$. Khẳng định nào dưới đây là khẳng định đúng?
Ta có:
$y'=\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'=\dfrac{f'\left( x \right)\left( g\left( x \right)+1 \right)-g'\left( x \right)\left( f\left( x \right)+3 \right)}{{{\left( g\left( x \right)+1 \right)}^{2}}}$ $\begin{array}{l} \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) + 1} \right) - g'\left( 1 \right)\left( {f\left( 1 \right) + 3} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right) = g'\left( 1 \right)\\ \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) - f\left( 1 \right) - 2} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right)\end{array}$
$\begin{array}{l} \Rightarrow g\left( 1 \right) - f\left( 1 \right) - 2 = {\left( {g\left( 1 \right) + 1} \right)^2}\\ \Rightarrow f\left( 1 \right) = - {g^2}\left( 1 \right) - g\left( 1 \right) - 3\end{array}$
Xét phương trình \( - {g^2}\left( 1 \right) - g\left( 1 \right) - 3 = 0\) có:
$\Delta = {\left( { - 1} \right)^2} - 4.\left( { - 1} \right).\left( { - 3} \right) = - 11 < 0;a = - 1 < 0$
$\dfrac{{ - \Delta }}{{4{\rm{a}}}} = \dfrac{{ - 11}}{4}\,\,\, \Rightarrow f\left( 1 \right) \le \dfrac{{ - 11}}{4}$