Bài 3 trang 48 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

Với giải Bài 3 trang 48 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Dãy số

Bài 3 trang 48 Toán 11 Tập 1: Xét tính tăng, giảm của mỗi dãy số (un), biết:

a) un=n3n+2 ;

b) un=3n2n.n! ;

c) un = (– 1)n.(2n + 1).

Lời giải:

a) Ta có: un+1=n+13n+1+2=n2n+3

Xét hiệu un+1un=n2n+3n3n+2=n24n2+9n+3n+2=5n+3n+2>0,n* .

Suy ra un+1 > un

Vì vậy dãy số đa cho là dãy số tăng.

b) Ta có: un+1=3n+12n+1.n+1!=3.3n2n+1.2n.n!=32n+1.un

Vì n  * nên 32n+1<32 suy ra un+1 < un.

Vì vậy dãy số đã cho là dãy số giảm.

c) Ta có: un+1 = (– 1)n+1.(2n+1 + 1)

+) Nếu n chẵn thì un+1 = – (2.2n + 1) và un = 2n + 1. Do đó un+1 < un.

Vì vậy với n chẵn thì dãy số đã cho là dãy giảm.

+) Nếu n lẻ thì un+1 = 2.2n + 1 và un = – (2n + 1). Do đó un+1 > un.

Vì vậy với n chẵn thì dãy số đã cho là dãy tăng.