Cho 20 điểm phân biệt, trong đó có a điểm thẳng hàng. Cứ 2 điểm, ta vẽ một đường thẳng. Tìm a , biết vẽ được tất cả 170 đường thẳng.
Trong 20 điểm mà không có ba điểm nào thẳng hàng thì ta vẽ được: \(19.20:2 = 190\) đường thẳng.
Trong a điểm mà không có ba điểm nào thẳng hàng thì ta vẽ được: \(\left( {a - 1} \right).a:2\) đường thẳng.
Nhưng do có a điểm thẳng hàng nên chỉ có 1 đường thẳng được vẽ. Do đó,theo bài ra ta có:
$\begin{array}{l}190 - \dfrac{{\left( {a - 1} \right)a}}{2} + 1 = 170\\ \Leftrightarrow \dfrac{{\left( {a - 1} \right)a}}{2} = 21\\ \Leftrightarrow {a^2} - a - 42 = 0\\ \Leftrightarrow {a^2} - 7a + 6{\rm{a}} - 42 = 0\\ \Leftrightarrow a\left( {a - 7} \right) + 6\left( {a - 7} \right) = 0\\ \Leftrightarrow \left( {a - 7} \right)\left( {a + 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}a - 7 = 0\\a + 6 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 7\left( {tm} \right)\\a = - 6\left( {ktm} \right)\end{array} \right.\end{array}$
Vậy có 7 điểm thẳng hàng.
Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Tính số giao điểm của chúng.
Mỗi đường thẳng cắt 100 đường thẳng còn lại tạo nên 100 giao điểm .
Vì có 101 đường thẳng nên có 101.100 giao điểm .
Nhưng mỗi giao điểm đã được tính hai lần nên chỉ có \(101.100:2 = 5050\) ( giao điểm).