I. Dạng 1: Xác định các đại lượng cơ bản trong dao động điều hòa của con lắc đơn
- Tìm \(\omega ,{\rm{ }}{\bf{T}},{\rm{ }}{\bf{f}}\) : Đề cho l, g:
\(\omega = \sqrt {\dfrac{g}{l}} ,T = \dfrac{{2\pi }}{\omega } = 2\pi \sqrt {\dfrac{l}{g}} ,f = \dfrac{\omega }{{2\pi }} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{g}{l}} \)
- Tìm gia tốc rơi tự do:
\(T = \dfrac{{2\pi }}{\omega } = 2\pi \sqrt {\dfrac{l}{g}} \to g = \dfrac{{4{\pi ^2}l}}{{{T^2}}}\)
Ví dụ: Một con lắc đơn có chiều dài \(l = 80\,\,cm\) dao động điều hòa tại nơi có \(g = 9,81\;m/{s^2}\). Chu kỳ dao động của con lắc là
A. \(1,242s.\)
B. \(1,793s.\)
C. \(0,558s.\)
D. \(2,351s.\)
Lời giải:
Chu kỳ dao động của con lắc là:
\(T = 2\pi \sqrt {\dfrac{l}{g}} = 2\pi \sqrt {\dfrac{{0,8}}{{9,81}}} \approx 1,793\left( s \right)\)
Chọn B
II. Dạng 2: Tìm tần số góc, chu kì, tần số: thay đổi chiều dài dây treo l
- Trong cùng khoảng thời gian t, hai con lắc thực hiện N1 và N2 dao động:
\(f = \dfrac{N}{t} \to \dfrac{g}{l} = {\omega ^2} = {(2\pi f)^2} = {(\dfrac{{2\pi N}}{t})^2} \to \dfrac{{{l_2}}}{{{l_1}}} = {(\dfrac{{{N_1}}}{{{N_2}}})^2}\)
- Thay đổi chiều dài con lắc:
Ta có: \({T^2} \sim l,{f^2} \sim \dfrac{1}{l},{\omega ^2} \sim \dfrac{1}{l}\)
Ta suy ra:
\({(\dfrac{{{\omega _1}}}{{{\omega _2}}})^2} = {(\dfrac{{{f_1}}}{{{f_2}}})^2} = \dfrac{{{l_2}}}{{{l_1}}} = \dfrac{{{l_1} \pm \Delta l}}{{{l_1}}}\)
Ta có:
\({T_1} = 2\pi \sqrt {\dfrac{{{\ell _1}}}{g}} \Rightarrow {\rm{T}}_1^2 = 4{\pi ^2}.\dfrac{{{\ell _1}}}{g};{T_2} = 2\pi \sqrt {\dfrac{{{\ell _2}}}{g}} \Rightarrow {\rm{T}}_2^2 = 4{\pi ^2}.\dfrac{{{\ell _2}}}{g}\)
Chu kỳ của con lắc có chiều dài: \({\ell _3} = {\ell _1} \pm {\ell _2}\) là: \({T_3} = 2\pi \sqrt {\dfrac{{{\ell _1} + {\ell _2}}}{g}} \Rightarrow T_3^2 = 4{\pi ^2}.\left( {\dfrac{{{\ell _1} \pm {\ell _2}}}{g}} \right) = T_1^2 \pm T_2^2\)
III. Dạng 3: Viết phương trình dao động điều hòa của con lắc đơn
- Bước 1: Xác định biên độ góc: \({S_0},{\alpha _0}.\)
Sử dụng các dữ kiện đầu bài cho và hệ thức độc lập với thời gian: \(s_0^2 = {s^2} + \dfrac{{{v^2}}}{{{\omega ^2}}}\)hay \(\alpha _0^2 = {\alpha ^2} + \dfrac{{{v^2}}}{{{l^2}{\omega ^2}}}\) hoặc \(\alpha _0^2 = {\alpha ^2} + \dfrac{{{v^2}}}{{lg}}\)
- Bước 2: Xác định tần số góc ω: \(\omega = \sqrt {\dfrac{g}{l}} = \dfrac{{2\pi }}{T} = 2\pi f\)
- Bước 3: Xác định pha ban đầu: \(\varphi \)
Tại \(t{\rm{ }} = {\rm{ }}0:\left\{ \begin{array}{l}s = {s_0}{\rm{cos}}\varphi \\v = - \omega {s_0}\sin \varphi \end{array} \right.\)
- Bước 4: Viết PTDĐ: \(s = {s_0}{\rm{cos(}}\omega {\rm{t + }}\varphi {\rm{) hay }}\alpha {\rm{ = }}{\alpha _0}{\rm{cos(}}\omega {\rm{t + }}\varphi {\rm{)}}\)
Với \({s_0} = l{\alpha _0}\)