Các dạng toán về phép cộng và phép trừ phân số
Sách kết nối tri thức với cuộc sống
Cho \(x\) là số thỏa mãn \(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\) . Chọn kết luận đúng:
\(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{13}} + ... + \dfrac{1}{{41}} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{8}{{45}} = - \dfrac{{37}}{{45}}\)
\(x = - \dfrac{{37}}{{45}} - \dfrac{8}{{45}}\)
\(x = - 1\)
Vì \( - 1\) là số nguyên âm nên đáp án A đúng.
Cho \(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\) . Chọn câu đúng.
\(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\)
\( < \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{2001.2002}} + \dfrac{1}{{2002.2003}}\)
\( = \dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{{2001}} - \dfrac{1}{{2002}} + \dfrac{1}{{2002}} - \dfrac{1}{{2003}}\)
\( = 1 - \dfrac{1}{{2003}} = \dfrac{{2002}}{{2003}} < 1\)
Vậy \(P < 1\)