Góc giữa hai mặt phẳng

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

I. Cách xác định góc giữa hai mặt phẳng

TH1: Hai mặt phẳng \(\left( P \right),\left( Q \right)\) song song hoặc trùng nhau thì góc giữa chúng bằng \({0^0}\).

TH2: Hai mặt phẳng \(\left( P \right),\left( Q \right)\) không song song hoặc trùng nhau.

Cách 1:

+) Dựng hai đường thẳng \(n,p\) lần lượt vuông góc với hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

+) Khi đó, góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) là góc giữa hai đường thẳng \(n,p\).

Góc giữa hai vecto pháp tuyến

Cách 2:

+) Xác định giao tuyến \(\Delta \) của hai mặt phẳng \(\left( P \right),\left( Q \right)\).

+) Tìm một mặt phẳng \(\left( R \right)\) vuông góc \(\Delta \) và cắt và hai mặt phẳng theo các giao tuyến \(a,b\).

+) Góc giữa hai mặt phẳng \(\left( P \right),\left( Q \right)\) là góc giữa \(a\) và \(b\).

Góc giữa hai giao tuyến

II. Diện tích hình chiếu của đa giác

Gọi \(S\) là diện tích của đa giác \(\left( H \right)\) trong \(\left( P \right),S'\) là diện tích hình chiếu \(\left( {H'} \right)\) của \(\left( H \right)\) trên mặt phẳng \(\left( Q \right)\) và \(\alpha  = \left( {\left( P \right),\left( Q \right)} \right)\). Khi đó:

\(S' = S.\cos \alpha \)

Ví dụ: Cho tứ diện \(ABCD\) có \(\Delta BCD\) vuông cân tại \(B\), \(AB \bot \left( {BCD} \right),BC = BD = a\), góc giữa \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) là \({30^0}\). Tính diện tích toàn phần của tứ diện \(ABCD\).

Giải:

Góc giữa hai mặt phẳng

- Xác định góc giữa hai mặt phẳng \(\left( {ACD} \right)\)\(\left( {BCD} \right)\):

Ta có: \(\Delta ABC = \Delta ABC\left( {c.g.c} \right) \Rightarrow AC = AD\) (cạnh tương ứng)

Gọi \(E\) là trung điểm của \(CD \Rightarrow AE \bot CD,BE \bot CD\).

Ta có: \(\left\{ \begin{array}{l}\left( {ACD} \right) \cap \left( {BCD} \right) = CD\\AE \bot CD\\BE \bot CD\end{array} \right.\)  nên góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) là góc giữa hai đường thẳng \(AE,BE\).

Do đó \(\widehat {AEB} = {30^0}\).

- Tính diện tích toàn phần của tứ diện:

Tam giác vuông cân \(BCE\) có:

\(CD = \sqrt {B{C^2} + B{D^2}}  = a\sqrt 2  \Rightarrow BE = \dfrac{1}{2}CD = \dfrac{1}{2}.a\sqrt 2  = \dfrac{{a\sqrt 2 }}{2}\)

Tam giác vuông \(ABE\) có \(AB = BE.\tan {30^0} = \dfrac{{a\sqrt 2 }}{2}.\dfrac{{\sqrt 3 }}{3} = \dfrac{{a\sqrt 6 }}{6}\)

Do đó:

\({S_{ABC}} = \dfrac{1}{2}BA.BC = \dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{6}.a = \dfrac{{{a^2}\sqrt 6 }}{{12}}\)

\({S_{ABD}} = \dfrac{1}{2}BA.BD = \dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{6}.a = \dfrac{{{a^2}\sqrt 6 }}{{12}}\)

\({S_{BCD}} = \dfrac{1}{2}BC.BD = \dfrac{{{a^2}}}{2}\)

\({S_{ACD}} = \dfrac{{{S_{BCD}}}}{{\cos {{30}^0}}} = \dfrac{1}{2}{a^2}:\dfrac{{\sqrt 3 }}{2} = \dfrac{{{a^2}}}{{\sqrt 3 }} = \dfrac{{{a^2}\sqrt 3 }}{3}\)

Vậy diện tích toàn phần của tứ diện là:

\(S = {S_{ABC}} + {S_{ABD}} + {S_{BCD}} + {S_{ACD}} = \dfrac{{{a^2}\sqrt 6 }}{{12}} + \dfrac{{{a^2}\sqrt 6 }}{{12}} + \dfrac{{{a^2}\sqrt 3 }}{3} + \dfrac{{{a^2}}}{2} = \dfrac{{{a^2}\left( {\sqrt 6  + 2\sqrt 3  + 3} \right)}}{6}\) .