Nguyên hàm (từng phần)

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

  •   

I. Dạng 1: Hàm số logarit

Tính nguyên hàm f(x)ln(ax+b)dx với f(x) là một hàm đa thức.

Phương pháp:

- Bước 1: Đặt {u=ln(ax+b)dv=f(x)dx{du=aax+bdxv=f(x)dx

- Bước 2: Tính nguyên hàm theo công thức f(x)ln(ax+b)dx=uvvdu

Ví dụ: Tìm nguyên hàm của hàm số f(x)=xlnx

Giải: Ta có F(x)=f(x)dx=xlnxdx.

Đặt {u=lnxdv=xdx{du=dxxv=x22

Theo công thức tính nguyên hàm từng phần, ta có:

F(x)=12x2lnx12xdx=12x2lnx14x2+C

II. Dạng 2: Hàm số mũ

Tính nguyên hàm f(x)eax+bdx với f(x) là một hàm đa thức.

Phương pháp:

- Bước 1: Đặt {u=f(x)dv=eax+bdx{du=f(x)dxv=1aeax+b

- Bước 2: Tính nguyên hàm theo công thức f(x)eax+bdx=uvvdu

Ví dụ: Tính I=xexdx

Giải:

Đặt {u=xdv=exdx{du=dxv=ex

Theo công thức tính nguyên hàm từng phần, ta có

I=xexdx=xexexdx=xexd(ex)=xexex+C

III. Dạng 3: Hàm số lượng giác và hàm đa thức

Tính nguyên hàm f(x)sin(ax+b)dx hoặc f(x)cos(ax+b)dx.

Phương pháp:

- Bước 1: Đặt {u=f(x)dv=sin(ax+b)dx{du=f(x)dxv=1acos(ax+b) hoặc {u=f(x)dv=cos(ax+b)dx{du=f(x)dxv=1asin(ax+b)

- Bước 2: Tính nguyên hàm theo công thức f(x)sin(ax+b)dx=uvvdu hoặc f(x)cos(ax+b)dx=uvvdu

Ví dụ: Tính I=xsinxdx

Giải:

Đặt {u=xdv=sinxdx{du=dxv=cosx

Theo công thức nguyên hàm từng phần ta có:

I=xcosx+cosxdx=xcosx+sinx+C

IV. Dạng 4: Hàm số lượng giác và hàm số mũ

Tính nguyên hàm eax+bsin(cx+d)dx hoặc eax+bcos(cx+d)dx.

- Bước 1: Đặt {u=sin(cx+d)dv=eax+bdx  hoặc {u=cos(cx+d)dv=eax+bdx

- Bước 2: Tính nguyên hàm theo công thức uvvdu.

- Đối với dạng toán này, ta cần thực hiện hai lần nguyên hàm từng phần.

- Ở bước 1 ta cũng có thể đổi lại đặt {u=eax+bdv=sin(cx+d)dx hoặc {u=eax+bdv=cos(cx+d)dx

Ví dụ: Tính nguyên hàm I=sinx.exdx

Giải:

Đặt {u=sinxdv=exdx{du=cosxdxv=ex.

Khi đó I=exsinxcosxexdx=exsinxJ

Tính J=cosxexdx. Đặt {u=cosxdv=exdx{du=sinxdxv=ex

Suy ra J=excosx+sinxexdx=excosx+I.

Do đó I=exsinxJ=exsinx(excosx+I)2I=exsinxexcosx

Vậy I=12(exsinxexcosx)+C

Nếu biểu thức dưới dấu tích phân có các hàm số sau thì thứ tự ưu tiên để đặt u là:

Lôgarit-> Hàm đa thức -> Hàm mũ -> Hàm lượng giác