Muốn nhân hai phân số, ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số. Đúng hay sai?
A. Đúng
A. Đúng
A. Đúng
Muốn nhân hai phân số, ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
Vậy phát biểu đã cho là đúng.
Phép nhân phân số có những tính chất nào dưới đây?
D. Tất cả các đáp án trên đều đúng
D. Tất cả các đáp án trên đều đúng
D. Tất cả các đáp án trên đều đúng
Phép nhân phân số có các tính chất:
+) Tính chất giao hoán : Khi đổi chỗ các phân số trong một tích thì tích của chúng không thay đổi.
\(a \times b = b \times a\)
+) Tính chất kết hợp: Khi nhân một tích hai phân số với phân số thứ ba, ta có thể nhân phân số thứ nhất với tích của hai phân số còn lại.
\((a \times b) \times c = a \times (b \times c)\)
+ Tính chất phân phối: Khi nhân một tổng hai phân số với phân số thứ ba, ta có thể nhân lần lượt từng phân số của tổng với phân số thứ ba rồi cộng các kết quả đó lại với nhau.
\((a + b) \times c = a \times c + b \times c\)
+ Nhân với số \(1\): Phân số nào nhân với \(1\) cũng bằng chính phân số đó.
\(a \times 1 = 1 \times a = a\)
+ Nhân với số \(0\): Phân số nào nhân với \(0\) cũng bằng \(0\).
\(a \times 0 = 0 \times a = 0\)
Vậy tất cả các đáp án A, B, C đều đúng.
Thực hiện tính:
Ta có: \(\dfrac{3}{5} \times \dfrac{4}{7} = \dfrac{{3 \times 4}}{{5 \times 7}} = \dfrac{{12}}{{35}}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(12\,;\,\,35\).
Điền số thích hợp vào chỗ chấm:
\(\dfrac{3}{5} \times \dfrac{4}{7} = \dfrac{{...}}{{...}}\)
B. \(12\,;\,\,35\)
B. \(12\,;\,\,35\)
B. \(12\,;\,\,35\)
Ta có: \(\dfrac{3}{5} \times \dfrac{4}{7} = \dfrac{{3 \times 4}}{{5 \times 7}} = \dfrac{{12}}{{35}}\)
Vậy đáp án đúng điền vào chỗ chấm lần lượt từ trên xuống dưới là \(12\,;\,\,35\).
Tính rồi rút gọn : \(\dfrac{5}{8} \times \dfrac{4}{{15}}\)
C. \(\dfrac{1}{6}\)
C. \(\dfrac{1}{6}\)
C. \(\dfrac{1}{6}\)
Ta có:
\(\dfrac{5}{8} \times \dfrac{4}{{15}} = \dfrac{{5 \times 4}}{{8 \times 15}} = \dfrac{{5 \times 4}}{{4 \times 2 \times 5 \times 3}} = \dfrac{1}{6}\)
Vậy đáp án đúng là \(\dfrac{1}{6}\).
Rút gọn rồi tính: \(\dfrac{{25}}{{30}} \times \dfrac{6}{8}\)
B. \(\dfrac{5}{8}\)
B. \(\dfrac{5}{8}\)
B. \(\dfrac{5}{8}\)
Ta có:
\(\dfrac{{25}}{{30}} \times \dfrac{6}{8} = \dfrac{5}{6} \times \dfrac{3}{4} = \dfrac{{5 \times 3}}{{6 \times 4}} = \dfrac{{5 \times 3}}{{3 \times 2 \times 4}} = \dfrac{5}{8}\)
Vậy đáp án đúng là \(\dfrac{5}{8}\).
Thực hiện tính:
Ta có:
\(\dfrac{6}{7} \times 8 = \dfrac{6}{7} \times \dfrac{8}{1} = \dfrac{{6 \times 8}}{{7 \times 1}} = \dfrac{{48}}{7}\)
Hoặc ta có thể viết gọn như sau: \(\dfrac{6}{7} \times 8 = \dfrac{{6 \times 8}}{7} = \dfrac{{48}}{7}\)
Vậy đáp án đúng điền vào chỗ chấm lần lượt từ trên xuống dưới là \(48\,;\,\,7\).
Thực hiện tính:
Phân số nào nhân với \(1\) cũng bằng chính phân số đó.
Do đó, ta có: \(\dfrac{7}{9} \times 1 = \dfrac{7}{9}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(7\,;\,\,9\).
Điền số thích hợp vào chỗ chấm :
\(\dfrac{6}{7} \times 8 = \dfrac{{...}}{...}\)
A. \(48\,\,;\,\,7\)
A. \(48\,\,;\,\,7\)
A. \(48\,\,;\,\,7\)
Ta có:
\(\dfrac{6}{7} \times 8 = \dfrac{6}{7} \times \dfrac{8}{1} = \dfrac{{6 \times 8}}{{7 \times 1}} = \dfrac{{48}}{7}\)
Hoặc ta có thể viết gọn như sau: \(\dfrac{6}{7} \times 8 = \dfrac{{6 \times 8}}{7} = \dfrac{{48}}{7}\)
Vậy đáp án đúng điền vào chỗ chấm lần lượt từ trên xuống dưới là \(48\,\,;\,\,7\).
Điền số thích hợp vào chỗ chấm :
\(\dfrac{7}{9} \times 1 = \dfrac{...}{...}\)
A. \(7\,\,;\,\,9\).
A. \(7\,\,;\,\,9\).
A. \(7\,\,;\,\,9\).
Phân số nào nhân với \(1\) cũng bằng chính phân số đó.
Do đó, ta có: \(\dfrac{7}{9} \times 1 = \dfrac{7}{9}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(7\,\,;\,\,9\).
Tìm \(x\), biết: \(x:\dfrac{7}{{12}} = \dfrac{1}{2} - \dfrac{2}{7}\)
A. \(x = \dfrac{1}{8}\)
A. \(x = \dfrac{1}{8}\)
A. \(x = \dfrac{1}{8}\)
Ta có:
\(\begin{array}{l}x:\dfrac{7}{{12}} = \dfrac{1}{2} - \dfrac{2}{7}\\x:\dfrac{7}{{12}} = \dfrac{3}{{14}}\\x = \dfrac{3}{{14}} \times \dfrac{7}{{12}}\\x = \dfrac{1}{8}\end{array}\)
Vậy \(x = \dfrac{1}{8}\).
Tính: \(6 \times \left( {\dfrac{5}{8} + \dfrac{3}{4}} \right)\)
D. \(\dfrac{{33}}{4}\)
D. \(\dfrac{{33}}{4}\)
D. \(\dfrac{{33}}{4}\)
Ta có:
\(6 \times \left( {\dfrac{5}{8} + \dfrac{3}{4}} \right) = 6 \times \left( {\dfrac{5}{8} + \dfrac{6}{8}} \right) = 6 \times \dfrac{{11}}{8} = \dfrac{{6 \times 11}}{8} = \dfrac{{3 \times 2 \times 11}}{{4 \times 2}} = \dfrac{{33}}{4}\)
Vậy đáp án đúng là \(\dfrac{{33}}{4}\).
Điền dấu thích hợp vào chỗ chấm:
Một hình vuông có cạnh \(\dfrac{5}{8}m\). Vậy chu vi hình vuông đó là... ; diện tích hình vuông đó là....
A. \(25\,;\,\,64\)
A. \(25\,;\,\,64\)
A. \(25\,;\,\,64\)
Chu vi hình vuông đó là:
\(\dfrac{5}{8} \times 4 = \dfrac{5}{2}\,\,(m)\)
Diện tích hình vuông đó là:
\(\dfrac{5}{8} \times \dfrac{5}{8} = \dfrac{{25}}{{64}}\,\,({m^2})\)
Đáp số: Chu vi: \(\dfrac{5}{2}m\) ; Diện tích: \(\dfrac{{25}}{{64}}\,\,{m^2}\)
Vậy đáp án đúng điền vào ô trống thứ nhất lần lượt từ trên xuống dưới là \(5\,;\,\,2\) ; đáp án điền ô trống thứ hai lần lượt từ trên xuống dưới là \(25\,;\,\,64\).
Kết quả của phép tính: \(\dfrac{2}{3} \times \dfrac{4}{5} \times \dfrac{9}{4}\) là:
B. \(\dfrac{6}{5}\)
B. \(\dfrac{6}{5}\)
B. \(\dfrac{6}{5}\)
Ta có:
\(\dfrac{2}{3} \times \dfrac{4}{5} \times \dfrac{9}{4} = \dfrac{{2 \times 4 \times 9}}{{3 \times 5 \times 4}} = \dfrac{{2 \times 4 \times 3 \times 3}}{{3 \times 5 \times 4}} = \dfrac{6}{5}\)
Vậy đáp án đúng là \(\dfrac{6}{5}\).
Chọn dấu thích hợp điền vào ô trống:
\(\dfrac{3}{4} \times \dfrac{8}{{15}} + \dfrac{1}{3}\,\,\,\,\cdot \cdot \cdot \,\,\,\,2 - \dfrac{2}{5} \times 3\)
A. \( < \)
A. \( < \)
A. \( < \)
Ta có:
+) $\dfrac{3}{4} \times \dfrac{8}{{15}} + \dfrac{1}{3} = \dfrac{2}{5} + \dfrac{1}{3} = \,\dfrac{{11}}{{15}}$ ;
+) $2 - \dfrac{2}{5} \times 3\, = \,2 - \dfrac{6}{5} = \,\dfrac{4}{5} = \dfrac{{12}}{{15}}\,$
Mà \(\dfrac{{11}}{{15}} < \dfrac{{12}}{{15}}\), hay \(\dfrac{{11}}{{15}} < \dfrac{4}{5}\).
Do đó \(\dfrac{3}{4} \times \dfrac{8}{{15}} + \dfrac{1}{3}\,\,\, < \,\,\,2 - \dfrac{2}{5} \times 3\).
Vậy dấu thích hợp điền vào ô trống là \( < \).
Điền số thích hợp vào ô trống:
Tính bằng cách thuận tiện
C. \(\dfrac{{5}}{{7}}\)
C. \(\dfrac{{5}}{{7}}\)
C. \(\dfrac{{5}}{{7}}\)
$\begin{array}{l}\dfrac{5}{7} \times \dfrac{{11}}{{18}} + \dfrac{7}{{18}} \times \dfrac{5}{7} = \dfrac{5}{7} \times \left( {\dfrac{{11}}{{18}} + \dfrac{7}{{18}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{7} \times \dfrac{8}{{18}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{7} \times 1\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,\,\,\,\dfrac{5}{7}\end{array}$
Điền số thích hợp vào ô trống (điền phân số dạng tối giản)
Một hình vuông có cạnh là \(\dfrac{5}{8}m\).
Chu vi hình vuông đó là:
\(\dfrac{5}{8} \times 4 = \dfrac{5}{2}\,\,(m)\)
Diện tích hình vuông đó là:
\(\dfrac{5}{8} \times \dfrac{5}{8} = \dfrac{{25}}{{64}}\,\,({m^2})\)
Đáp số: Chu vi: \(\dfrac{5}{2}m\) ;
Diện tích: \(\dfrac{{25}}{{64}}\,\,{m^2}\).
Vậy đáp án đúng điền vào ô trống thứ nhất lần lượt từ trên xuống dưới là \(5\,;\,\,2\) ; đáp án điền ô trống thứ hai lần lượt từ trên xuống dưới là \(25\,;\,\,64\).
Tính bằng cách thuận tiện:
$\begin{array}{l}\dfrac{5}{7} \times \dfrac{{11}}{{18}} + \dfrac{7}{{18}} \times \dfrac{5}{7} \\= \dfrac{5}{7} \times \left( {\dfrac{{11}}{{18}} + \dfrac{7}{{18}}} \right)\\ = \dfrac{5}{7} \times \dfrac{18}{{18}}\\= \dfrac{5}{7} \times 1\,\\ = \,\,\,\,\dfrac{5}{7}\end{array}$
Bác Lan trồng cà chua trên một mảnh vườn hình chữ nhật có chiều rộng là $\dfrac{{35}}{2}m$, chiều dài gấp \(4\) lần chiều rộng. Biết rằng cứ $1{m^2}$ thì thu được $3kg$ cà chua, vậy trên cả mảnh vườn đó bác Lan thu được số ki-lô-gam cà chua là:
C. \(3675\,kg\)
C. \(3675\,kg\)
C. \(3675\,kg\)
Chiều dài mảnh vườn đó là:
$\dfrac{{35}}{2} \times 4 = 70\,\,(m)$
Diện tích mảnh vườn đó là:
$\dfrac{{35}}{2} \times 70 = 1225\,\,({m^2})$
Trên cả mảnh vườn đó bác Lan thu được số ki-lô-gam cà chua là:
\(1225 \times 3 = 3675\,\,(kg)\)
Đáp số: \(3675kg\).