Muốn cộng hai phân số có cùng mẫu số thì:
B. ta cộng hai tử số với nhau, mẫu số giữ nguyên.
B. ta cộng hai tử số với nhau, mẫu số giữ nguyên.
B. ta cộng hai tử số với nhau, mẫu số giữ nguyên.
Muốn cộng hai phân số cùng mẫu số, ta cộng hai tử số với nhau và giữ nguyên mẫu số.
Phép cộng phân số có những tính chất nào dưới đây?
D. Tất cả các đáp án trên đều đúng
D. Tất cả các đáp án trên đều đúng
D. Tất cả các đáp án trên đều đúng
Phép cộng phân số có các tính chất:
+) Tính chất giao hoán: Khi đổi chỗ các phân số trong một tổng thì tổng không thay đổi.
\(a + b = b + a\)
+ Tính chất kết hợp: Khi cộng một tổng hai phân số với phân số thứ ba thì ta có thể cộng phân số thứ nhất với tổng của hai phân số còn lại.
\((a + b) + c = a + (b + c)\)
+ Cộng với số 0: Phân số nào cộng với \(0\) cũng bằng chính phân số đó.
\(a + 0 = 0 + a = a\)
Vậy tất cả các đáp án A, B, C đều đúng.
Chọn D
Thực hiện tính:
Ta có: \(\dfrac{2}{9} + \dfrac{5}{9} = \dfrac{{2 + 5}}{9} = \dfrac{7}{9}\).
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(7\,;\,\,9\).
Điền số thích hợp vào chỗ chấm:
\(\dfrac{2}{9} + \dfrac{5}{9} = \dfrac{...}{...}\)
B. \(7\,;\,\,9\)
B. \(7\,;\,\,9\)
B. \(7\,;\,\,9\)
Ta có: \(\dfrac{2}{9} + \dfrac{5}{9} = \dfrac{{2 + 5}}{9} = \dfrac{7}{9}\)
Vậy đáp án đúng điền vào chỗ chấm lần lượt từ trên xuống dưới là \(7\,;\,\,9\).
Tính: \(\dfrac{3}{4} + \dfrac{4}{5}\)
D. \(\dfrac{{31}}{{20}}\)
D. \(\dfrac{{31}}{{20}}\)
D. \(\dfrac{{31}}{{20}}\)
Ta có: \(\dfrac{3}{4} + \dfrac{4}{5} = \dfrac{{15}}{{20}} + \dfrac{{16}}{{20}} = \dfrac{{31}}{{20}}\)
Vậy đáp án đúng là \(\dfrac{{31}}{{20}}\).
Thực hiện phép tính:
Ta có: \(\dfrac{2}{{35}} + \dfrac{9}{{35}} + \dfrac{{22}}{{35}} = \dfrac{{2 + 9 + 22}}{{35}}=\dfrac{{33}}{{35}} \)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(33\,;\,\,35\).
Tính rồi rút gọn: \(\dfrac{5}{{12}} + \dfrac{1}{4}\)
A. \(\dfrac{2}{3}\)
A. \(\dfrac{2}{3}\)
A. \(\dfrac{2}{3}\)
Ta có: \(\dfrac{5}{{12}} + \dfrac{1}{4} = \dfrac{5}{{12}} + \dfrac{3}{{12}} = \dfrac{8}{{12}} = \dfrac{2}{3}\)
Vậy đáp án đúng là \(\dfrac{2}{3}\).
Điền số thích hợp vào chỗ chấm:
\(\dfrac{2}{{35}} + \dfrac{9}{{35}} + \dfrac{{22}}{{35}} = \dfrac{{...}}{{...}}\)
D. \(33\,;\,\,35\)
D. \(33\,;\,\,35\)
D. \(33\,;\,\,35\)
Ta có: \(\dfrac{2}{{35}} + \dfrac{9}{{35}} + \dfrac{{22}}{{35}} = \dfrac{{2 + 9 + 22}}{{35}} = \dfrac{{33}}{{35}}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(33\,;\,\,35\).
Tính: \(5 + \dfrac{2}{9}\)
C. \(\dfrac{{47}}{9}\)
C. \(\dfrac{{47}}{9}\)
C. \(\dfrac{{47}}{9}\)
Ta có: \(5 + \dfrac{2}{9} = \dfrac{5}{1} + \dfrac{2}{9} = \dfrac{{45}}{9} + \dfrac{2}{9} = \dfrac{{47}}{9}\)
Hoặc ta có thể viết gọn như sau: \(5 + \dfrac{2}{9} = \dfrac{{45}}{9} + \dfrac{2}{9} = \dfrac{{47}}{9}\)
Vậy đáp án đúng là \(\dfrac{{47}}{9}\).
Tìm \(x\), biết: \(x - \dfrac{3}{7} = \dfrac{4}{{21}}\)
B. \(x = \dfrac{{13}}{{21}}\)
B. \(x = \dfrac{{13}}{{21}}\)
B. \(x = \dfrac{{13}}{{21}}\)
Ta có:
$\begin{array}{l}x - \dfrac{3}{7} = \dfrac{4}{{21}}\\x = \dfrac{4}{{21}} + \dfrac{3}{7}\\x = \dfrac{4}{{21}} + \dfrac{9}{{21}}\\x = \dfrac{{13}}{{21}}\end{array}$
Vậy \(x = \dfrac{{13}}{{21}}\).
Tính: \(\dfrac{1}{2} + \dfrac{5}{{32}} + \dfrac{3}{8}\)
D. \(\dfrac{{33}}{{32}}\)
D. \(\dfrac{{33}}{{32}}\)
D. \(\dfrac{{33}}{{32}}\)
Ta thấy \(32:2 = 16\,\,;\,\,\,32:8 = 4\) nên ta chọn mẫu số chung là \(32\).
Ta có:
\(\dfrac{1}{2} + \dfrac{5}{{32}} + \dfrac{3}{8} = \dfrac{{16}}{{32}} + \dfrac{5}{{32}} + \dfrac{{12}}{{32}} = \dfrac{{16+5+12}}{{32}}= \dfrac{{33}}{{32}}\)
Vậy đáp án đúng là \(\dfrac{{33}}{{32}}\).
Chọn dấu thích hợp để điền vào chỗ chấm:
\(\dfrac{1}{8} + \dfrac{3}{5}\,\,\, ...\,\,\,\dfrac{1}{4} + \dfrac{7}{{20}}\)
B. \( > \)
B. \( > \)
B. \( > \)
Ta có:
\(\dfrac{1}{8} + \dfrac{3}{5}\,\, = \dfrac{5}{{40}} + \dfrac{{24}}{{40}} = \dfrac{{29}}{{40}}\);
\( \dfrac{1}{4} + \dfrac{7}{{20}} = \dfrac{5}{{20}} + \dfrac{7}{{20}} = \dfrac{{12}}{{20}} = \dfrac{{24}}{{40}}\)
Mà \(\dfrac{{29}}{{40}} > \dfrac{{24}}{{40}}\).
Do đó \(\dfrac{1}{8} + \dfrac{3}{5}\,\,\, > \,\,\,\dfrac{1}{4} + \dfrac{7}{{20}}\).
Vậy dấu thích hợp điền vào ô trống là \( > \).
Một vòi nước giờ thứ nhất chảy được \(\dfrac{1}{3}\) bể nước, giờ thứ hai chảy được \(\dfrac{2}{7}\) bể nước . Hỏi sau hai giờ vòi nước đó chảy được bao nhiêu phần bể nước?
B. \(\dfrac{{13}}{{21}}\) bể nước
B. \(\dfrac{{13}}{{21}}\) bể nước
B. \(\dfrac{{13}}{{21}}\) bể nước
Sau hai giờ vòi nước đó chảy được số phần bể nước là:
\(\dfrac{1}{3} + \dfrac{2}{7} = \dfrac{{13}}{{21}}\) (bể nước)
Đáp số: \(\dfrac{{13}}{{21}}\) bể nước.
Tính bằng cách thuận tiện:
$\begin{array}{l}\dfrac{5}{{12}} + \dfrac{2}{7} + \dfrac{7}{{12}} + \dfrac{5}{7} \\ = \left( {\dfrac{5}{{12}} + \dfrac{7}{{12}}} \right) + \left( {\dfrac{2}{7} + \dfrac{5}{7}} \right)\\ = \dfrac{{12}}{{12}} + \dfrac{7}{7}\\ = \,\,1\,\, + \,\,1\\ = \,\,\,\,\,\, \;2\end{array}$
Điền số thích hợp vào chỗ chấm:
$\begin{array}{l}\dfrac{5}{{12}} + \dfrac{2}{7} + \dfrac{7}{{12}} + \dfrac{5}{7} = \,\,...\end{array}$
Tính bằng cách thuận tiện
B. \(2\)
B. \(2\)
B. \(2\)
$\begin{array}{l}\dfrac{5}{{12}} + \dfrac{2}{7} + \dfrac{7}{{12}} + \dfrac{5}{7} = \left( {\dfrac{5}{{12}} + \dfrac{7}{{12}}} \right) + \left( {\dfrac{2}{7} + \dfrac{5}{7}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{12}}{{12}} + \dfrac{7}{7}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,\,1\,\, + \,\,1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,\,\,\,\,\,2\end{array}$
Hộp thứ nhất đựng \(\dfrac{1}{4}kg\) kẹo, hộp thứ hai đựng nhiều hơn hộp thứ nhất \(\dfrac{3}{8}kg\) kẹo nhưng ít hơn hộp thứ ba \(\dfrac{1}{5}kg\) kẹo. Hỏi cả ba hộp đựng bao nhiêu ki-lô-gam kẹo?
B. \(\dfrac{{17}}{{10}}kg\)
B. \(\dfrac{{17}}{{10}}kg\)
B. \(\dfrac{{17}}{{10}}kg\)
Hộp thứ hai đựng số ki-lô-gam kẹo là:
\(\dfrac{1}{4} + \dfrac{3}{8} = \dfrac{5}{8}\,\,(kg)\)
Hộp thứ ba đựng số ki-lô-gam kẹo là:
\(\dfrac{5}{8} + \dfrac{1}{5} = \dfrac{{33}}{{40}}\,\,(kg)\)
Cả ba hộp đựng số ki-lô-gam kẹo là:
\(\dfrac{1}{4} + \dfrac{5}{8} + \dfrac{{33}}{{40}} = \dfrac{{68}}{{40}} = \dfrac{{17}}{{10}}\,\,(kg)\)
Đáp số: \(\dfrac{{17}}{{10}}kg.\)
Điền số thích hợp vào chỗ chấm:
Tính bằng cách thuận tiện rồi rút gọn:
C. \(22\,\,;\,\,5\).
C. \(22\,\,;\,\,5\).
C. \(22\,\,;\,\,5\).
Ta có:
$\begin{array}{l}\dfrac{4}{{20}} + \dfrac{9}{{30}} + \dfrac{{16}}{{40}} + \dfrac{{25}}{{50}} + \dfrac{{36}}{{60}} + \dfrac{{49}}{{70}} + \dfrac{{64}}{{80}} + \dfrac{{81}}{{90}}\\ = \dfrac{2}{{10}} + \dfrac{3}{{10}} + \dfrac{4}{{10}} + \dfrac{5}{{10}} + \dfrac{6}{{10}} + \dfrac{7}{{10}} + \dfrac{8}{{10}} + \dfrac{9}{{10}}\\ = \dfrac{{2 + 3 + 4 + 5 + 6 + 7 + 8 + 9}}{{10}}\\ = \dfrac{{44}}{{10}}\\ = \dfrac{{22}}{5}\end{array}$
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(22\,\,;\,\,5\).
Tính bằng cách thuận tiện rồi rút gọn thành phân số tối giản:
Ta có:
\(\begin{array}{l}\dfrac{4}{{20}} + \dfrac{9}{{30}} + \dfrac{{16}}{{40}} + \dfrac{{25}}{{50}} + \dfrac{{36}}{{60}} + \dfrac{{49}}{{70}} + \dfrac{{64}}{{80}} + \dfrac{{81}}{{90}}\\ = \dfrac{2}{{10}} + \dfrac{3}{{10}} + \dfrac{4}{{10}} + \dfrac{5}{{10}} + \dfrac{6}{{10}} + \dfrac{7}{{10}} + \dfrac{8}{{10}} + \dfrac{9}{{10}}\\ = \dfrac{{2 + 3 + 4 + 5 + 6 + 7 + 8 + 9}}{{10}}\\ = \dfrac{{44}}{{10}}\\ = \dfrac{{22}}{5}\end{array}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(22\,;\,\,5\).