Quan sát sóng dừng trên một sợi dây đàn hồi, người ta đo được khoảng cách giữa 5 nút sóng liên tiếp là 100 cm. Biết tần số của sóng truyền trên dây bằng 100 Hz, vận tốc truyền sóng trên dây là:
Khoảng cách giữa 5 nút liền kề là
$4\frac{\lambda }{2} = 100 \to \lambda = 50cm = 0,5m$
Vận tốc truyền sóng:
$v = \lambda f = 0,5.100 = 50m/s$
Trên một sợi dây đàn hồi đang có sóng dừng. Biết khoảng cách ngắn nhất giữa một nút sóng và vị trí cân bằng của một bụng sóng là 0,25m. Sóng truyền trên dây với bước sóng là:
Ta có: khoảng cách giữa nút và bụng liền kề là $\frac{\lambda }{4} = 0,25m \to \lambda = 1m$
Một sợi dây đàn hồi căng ngang, hai đầu cố định. Trên dây có sóng dừng, tốc độ truyền sóng không đổi. Khi tần số sóng trên dây là $42 Hz$ thì trên dây có $4$ điểm bụng. Tính tần số của sóng trên dây nếu trên dây có $6$ điểm bụng.
Điều kiện để có sóng dừng trên dây hai đầu cố định: $l = k\dfrac{\lambda }{2}{\text{ }}(k \in {N^*})$
Số bụng sóng = số bó sóng = k ;
Số nút sóng = k + 1
Vì hai đầu cố định là 2 nút nên ta có:
$l=k\dfrac{\lambda }{2}$ $= k\dfrac{v}{{2f}}$ $= k’\dfrac{{\lambda '}}{2}$ $= k’\dfrac{v}{{2f'}}$
=> $f’ =\dfrac{{k'f}}{k}= 63 Hz$
Quan sát sóng dừng trên sợi dây $AB$, đầu $A$ dao động điều hòa theo phương vuông góc với sợi dây (coi $A$ là nút). Với đầu $B$ tự do và tần số dao động của đầu $A$ là $22 Hz$ thì trên dây có $6$ nút. Nếu đầu $B$ cố định và coi tốc độ truyền sóng của dây như cũ, để vẫn có $6$ nút thì tần số dao động của đầu $A$ phải bằng bao nhiêu?
Khi $B$ tự do thì:
$ l = (2k + 1)\dfrac{{{\lambda _1}}}{4}$ $= (2k + 1)\dfrac{v}{{4{f_1}}}$.
Khi $B$ cố định thì:
$l = k\dfrac{{{\lambda _2}}}{2}$$= k\dfrac{v}{{2{f_2}}}$
$f_2 = \dfrac{{2k{f_1}}}{{2k + 1}}$.
Vì trên dây có $6$ nút nên $k = 5$.
Vậy: $f_2=\dfrac{{2.5.22}}{{2.5 + 1}}= 20 (Hz)$
Một sợi dây $AB$ dài $100 cm$ căng ngang, đầu $B$ cố định, đầu $A$ gắn với một nhánh của âm thoa dao động điều hòa với tần số $40 Hz$. Trên dây $AB$ có một sóng dừng ổn định, $A$ được coi là nút sóng. Tốc độ truyền sóng trên dây là $20 m/s$. Tìm số nút sóng và bụng sóng trên dây, kể cả $A$ và $B$.
Ta có:
\(\lambda = \dfrac{v}{f} = 0.5{\text{ }}m = 50{\text{ }}cm.\)
Ta có điều kiện để có sóng dừng trên dây hai đầu cố định:
$l = k\dfrac{\lambda }{2}{\text{ }}(k \in {N^*})$
Số bụng sóng = số bó sóng = k ;
Số nút sóng = k + 1
Trên dây có:
\(k = \dfrac{{AB}}{{\dfrac{\lambda }{2}}} = \dfrac{{2AB}}{\lambda } = 4\) bụng sóng.
=> số nút = k + 1 = 5 nút sóng
Trên một sợi dây dài 0,9 m có sóng dừng. Kể cả hai nút ở hai đầu dây thì trên dây có 10 nút sóng. Biết tần số của sóng truyền trên dây là 200Hz. Sóng truyền trên dây có tốc độ là
Ta có điều kiện để có sóng dừng trên dây hai đầu cố định:
$l = k\frac{\lambda }{2}{\text{ }}(k \in {N^*})$
Số bụng sóng = số bó sóng = k ; Số nút sóng = k + 1
$l = k\frac{\lambda }{2} \leftrightarrow 0,9 = 9\frac{\lambda }{2} \to \lambda = 0,2m$
tốc độ truyền sóng trên dây:
\(v = \lambda f = 0,2.200 = 40m/s\)
Một sợi dây $AB$ dài $50 cm$. Đầu $A$ dao động với tần số $f = 50 Hz$. Đầu $B$ cố định. Trên dây $AB$ có một sóng dừng ổn định, $A$ được coi là nút sóng. Tốc độ truyền sóng trên dây là $1 m/s$. Hỏi điểm $M$ cách $A$ một khoảng $3,5 cm$ là nút hay bụng thứ mấy kể từ $A$ và trên dây có bao nhiêu nút, bao nhiêu bụng kể cả $A$ và $B$.
Ta có:
\(\lambda = \dfrac{v}{f} = 0,02{\text{ }}m = 2{\text{ }}cm\)
Ta có điều kiện để có sóng dừng trên dây hai đầu cố định:
$l = k\dfrac{\lambda }{2}{\text{ }}(k \in {N^*})$
Số bụng sóng = số bó sóng = k ; Số nút sóng = k + 1
\(AM = 3,5{\text{ }}cm{\text{ }} = 7\dfrac{\lambda }{4} = \left( {2.3{\text{ }} + {\text{ }}1} \right)\dfrac{\lambda }{4}\)
=> M là bụng số $4$
$l = k\dfrac{\lambda }{2}{\text{ }} \leftrightarrow 0,5 = {\text{k}}\dfrac{{0,02}}{2} \to k = 50$
=> Trên dây có $50$ bụng, $51$ nút
Trong ống sáo một đầu kín một đầu hở có sóng dừng với tần số cơ bản là 110 Hz. Biết tốc độ truyền âm trong không khí là 330 m/s. Tìm độ dài của ống sáo.
Ta có:
λ = \(\dfrac{v}{f}\) =3 m.
Đầu kín của ống sáo là nút, đầu hở là bụng của sóng dừng nên chiều dài của ống sáo là:
L = \(\dfrac{\lambda }{4}\) = 0,75 m.
Một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, $A$ là một điểm nút, $B$ là một điểm bụng gần $A$ nhất, $C$ là trung điểm của $AB$, với $AC = 10cm$. Biết khoảng thời gian ngắn nhất giữa hai lần mà li độ dao động của phần tử tại $B$ bằng biên độ dao động của phần tử tại $C$ là $0,1s$. Tốc độ truyền sóng trên dây là:
Vì $B$ là điểm bụng gần nút $A$ nhất
$C$- là trung điểm của $AB$ =>
$AC = \dfrac{\lambda }{8} = 10cm \to \lambda = 80cm$
Biên độ dao động của phần tử tại $C$:
${A_C} = \sqrt 2 A$
Khoảng thời gian ngắn nhất giữa hai lần mà li độ dao động của phần tử tại $B$ bằng biên độ dao động của phần tử tại $C$ là:
$\dfrac{T}{4} = 0,1{\text{s}} \to T = 0,4{\text{s}}$
Vận tốc truyền sóng:
$v = \dfrac{\lambda }{T} = \dfrac{{0,8}}{{0,4}} = 2m/s$
Một sợi dây đàn hồi OM dài 120 cm có hai đầu cố định. Khi được kích thích dao động, trên dây hình thành hai bụng sóng (với O và M là hai nút), biên độ tại bụng là A. Tại điểm P gần O nhất dao động với biên độ \(\dfrac{A}{2}\) là
Trên dây hình thành 2 bụng sóng, ta có:
\({\rm{l}} = k\dfrac{\lambda }{2} \Rightarrow 120 = 2.\dfrac{\lambda }{2} \Rightarrow \lambda = 120\,\,\left( {cm} \right)\)
Biên độ của điểm P là:
\(\begin{array}{l}{A_P} = {A_{bung}}.\left| {\sin \dfrac{{2\pi x}}{\lambda }} \right| \Rightarrow \dfrac{A}{2} = A.\left| {\sin \dfrac{{2\pi x}}{{120}}} \right|\\ \Rightarrow \left| {\sin \dfrac{{2\pi x}}{{120}}} \right| = \dfrac{1}{2} \Rightarrow x = 10\,\,\left( {cm} \right)\end{array}\)
Trong giờ thực hành hiện tượng sóng dừng trên dây với hai đầu cố định, một học sinh thực hiện như sau: tăng tần số của máy phát dao động thì thấy rằng khi sóng dừng xuất hiện trên dây tương ứng với 1 bó sóng và 7 bó sóng thì tần số thu được thỏa mãn \({f_7} - {f_1} = 150\,\,\left( {Hz} \right)\). Khi trên dây xuất hiện sóng dừng với 4 nút sóng thì máy phát tần số hiện giá trị là
Khi trên dây có 1 bó sóng, ta có chiều dài dây là: \({\rm{l}} = \dfrac{v}{{2{f_1}}}\)
Khi trên dây có 7 bó sóng, chiều dài dây là: \({\rm{l}} = 7\dfrac{v}{{2{f_7}}}\)
\( \Rightarrow {\rm{l}} = 7\dfrac{v}{{2{f_7}}} = \dfrac{v}{{2{f_1}}} = \dfrac{{6v}}{{2\left( {{f_7} - {f_1}} \right)}} \Rightarrow {f_1} = \dfrac{{{f_7} - {f_1}}}{6} = \dfrac{{150}}{6} = 25\,\,\left( {Hz} \right)\)
Khi trên dây có 4 nút sóng, số bó sóng trên dây là 3, khi đó ta có:
\({\rm{l}} = 3\dfrac{v}{{2{f_3}}} = \dfrac{v}{{2{f_1}}} \Rightarrow {f_3} = 3{f_1} = 3.25 = 75\,\,\left( {Hz} \right)\)
Sóng dừng trên một sợi dây với hai đầu cố định. Khi tần số sóng là \(f\) thì trên sợi dây có 10 nút sóng (kể cả hai đầu). Nếu tần số sóng là \(\frac{4}{3}f\) thì trên dây có số bụng sóng là
Khi tần số sóng là \(f\) thì \(l = k\dfrac{v}{{2f}} \Rightarrow \dfrac{v}{{2l}} = \dfrac{k}{f} = \dfrac{9}{f}\) (1)
Khi tần số là \(\dfrac{4}{3}f\) thì: \(\dfrac{v}{{2l}} = \dfrac{{3k}}{{4f}}\)(2)
Từ (1) và (2) ta có: \(\dfrac{9}{f} = \dfrac{{3k}}{{4f}} \Rightarrow k = 12\)