Chọn câu trả lời sai.
+) Ta thấy \(55 \, \vdots \, 5;\,110 \, \vdots \, 5\) nên \(5 \in \) ƯC\(\left( {55;110} \right)\). Do đó A đúng.
+) Vì \(24 \, \vdots \, 3;24 \, \vdots \, 4\) nên \(24 \in BC\left( {3;4} \right)\). Do đó B đúng.
+) Vì \(55\) không chia hết cho (\10\) nên \(10 \notin \) ƯC \(\left( {55;110} \right)\). Do đó C đúng.
+) Vì \(12 \, \vdots \, 3;12 \, \vdots \, 4\) nên \(12 \in BC\left( {3;4} \right)\). Kí hiệu \(12 \subset BC\left( {3;4} \right)\) là sai. Do đó D sai.
Cho tập hợp $X$ là ước của $35$ và lớn hơn $5$. Cho tập $Y$ là bội của $8$ và nhỏ hơn $50$.
Gọi $M$ là giao của $2$ tập hợp $X$ và $Y$, tập hợp $M$ có bao nhiêu phần tử?
Ư$(35) = \{ 1,5,7,35\} ;$Ư$(35) > 5 \Rightarrow X = \{ 7,35\} $
$B(8) = \{ 0,8,16,24,32,40,48,56,...\} $
$B(8) < 50 \Rightarrow Y = \{ 0,8,16,24,32,40,48\} $
Vì:
$X = \{ 7,35\} $
$Y = \{ 0,8,16,24,32,40,48\} $
$ \Rightarrow M = X \cap Y = \emptyset $ nên tập M không có phần tử nào.
Có bao nhiêu số tự nhiên \(x\) khác \(0\) thỏa mãn $x \in BC(12 ; 15 ; 20) $ và $x$ $ \le $ $100$
Ta có \(B\left( {12} \right) = \left\{ {0;12;24;36;48;60;72;84;96;...} \right\}\)
\(B\left( {15} \right) = \left\{ {0;15;30;45;60;75;90;105;...} \right\}\)
\(B\left( {20} \right) = \left\{ {0;20;40;60;80;100;...} \right\}\)
Nên \(BC\left( {12;15;20} \right) = \left\{ {0;60;120;...} \right\}\) mà \(x \le 100\) và \(x \ne 0\) nên \(x = 60.\)
Có một số tự nhiên thỏa mãn đề bài.
Tìm số tự nhiên \(x\) nhỏ nhất biết \(x \, \vdots \, 45;\,x \, \vdots \, 110\) và \(x \, \vdots \,75.\)
Vì \(x \, \vdots \, 45;\,x \, \vdots \, 110\) và \(x \, \vdots \, 75\) nên \(x \, \in BC\left( {45;75;110} \right)\) mà \(x\) nhỏ nhất nên \(x = BCNN\left( {45;75;110} \right)\)
Ta có \(45 = {3^2}.5;\,75 = {3.5^2};\,110 = 2.5.11\)
Nên \(BCNN\left( {45;75;110} \right) = {2.3^2}{.5^2}.11\)\( = 4950.\)
Tìm một số tự nhiên biết tích của ước số lớn nhất với bội số nhỏ nhất khác $0$ của nó là $256 .$
Gọi số cần tìm là $a$ $( a \ne 0)$
Ước số lớn nhất của $a$ là $a$
Bội số nhỏ nhất khác $0$ của $a$ là $a$
Tích của ước số lớn nhất với bội số nhỏ nhất là:
$a.a = 256 = {16^2}$ $ \Rightarrow a = 16.$
Vậy số cần tìm là \(16.\)
Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ \(800\) đến \(900\) em.
Gọi số học sinh đi thăm quan là \(x\,\left( {x \in {N^*};\,800 \le x \le 900} \right)\) (học sinh)
Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi nghĩa là thừa ra 5 học sinh nên ta có
\(\left( {x - 5} \right) \vdots 35;\,\left( {x - 5} \right) \vdots 40\) suy ra \(\left( {x - 5} \right) \in BC\left( {35;40} \right)\).
Ta có \(35 = 5.7;\,40 = {2^3}.5\) nên \(BCNN\left( {35;40} \right) = {2^3}.5.7 = 280.\)
Suy ra \((x-5) \in BC\left( {35;40} \right) = B\left( {280} \right) = \left\{ {280;560;840;1120;...} \right\}\) mà \(800 \le x \le 900\) nên \(x -5= 840\) hay $x=845.$
Vậy số học sinh đi thăm quan là \(845\) học sinh.
Tìm số tự nhiên n lớn nhất có $3$ chữ số sao cho $n$ chia $8$ dư $7,$ chia $31$ dư $28.$
Vì $n$ chia $8$ dư $7$ nên $\left( {n - 7} \right) \vdots 8\,\,\,\,\left( {n > 7} \right)$
$ \Rightarrow n = 8a + 7$ với $a \in \mathbb{N}$$ \Rightarrow \left( {n + 1} \right) \vdots 8$
Vì $n$ chia $31$ dư $28$ nên $\left( {n - 28} \right) \vdots 31\left( {n > 28} \right)$ $ \Rightarrow n = 31b + 28$ $\left( {b \in \mathbb{N}} \right)$
$ \Rightarrow \left( {n + 3} \right) \vdots 31$
Vì $64 \vdots 8$ nên $\left( {n + 1 + 64} \right) \vdots 8$ hay $\left( {n + 65} \right) \vdots 8\left( 1 \right)$
Vì $62 \vdots 31$ $ \Rightarrow \left( {n + 3 + 62} \right) \vdots 31$ hay $\left( {n + 65} \right) \vdots 31$ (2)
Từ (1) và (2) $ \Rightarrow \left( {n + 65} \right) \vdots $$BCNN\left( {8;31} \right)$
$ \Rightarrow \left( {n + 65} \right) \vdots 248$
$ \Rightarrow n = 248k - 65$ $\left( {k \in {\mathbb{N}^ * }} \right)$
Với $k = 1$ $ \Rightarrow n = 248.1 - 65 = 183$
Với $k = 2 \Rightarrow n = 248.2 - 65 = 431$
Với $k = 3 \Rightarrow n = 248.3 - 65 = 679$
Với $k = 4 \Rightarrow n = 248.4 - 65 = 927$
Với $k = 5 \Rightarrow n = 248.5 - 65 = 1175$ (loại)
Vì $n$ là số lớn nhất có $3$ chữ số nên $n = 927.$
Cho \(a;b\) có \(BCNN\left( {a;b} \right) = 630;\,\)ƯCLN\(\left( {a;b} \right) = 18.\) Có bao nhiêu cặp số \(a;b\) thỏa mãn?
Vì ƯCLN\(\left( {a;b} \right) = 18\) nên đặt \(a = 18x;\,b = 18y\) với \(x;y \in N;\,\)\(ƯCLN \left( {x;y} \right) = 1;\,y \ne 1.\)
Vì ƯCLN\(\left( {a;b} \right).BCNN\left( {a;b} \right) = a.b\)
Nên \(18.630 = 18x.18y\) \( \Rightarrow x.y = \left( {18.630} \right):\left( {18.18} \right)\) hay \(x.y = 35\) mà \(y \ne 1\)
Do đó ta có:
+) Nếu \(x = 1\) thì \(y = 35\) khi đó \(a = 18.1 = 18;b = 35.18 = 630\)
+) Nếu \(x = 5\) thì \(y = 7\) khi đó \(a = 18.5 = 90;b = 7.18 = 126\)
+) Nếu \(x = 7\) thì \(y = 5\) khi đó \(a = 18.7 = 126;b = 5.18 = 90\)
Vậy có ba cặp số \(a;b\) thỏa mãn.
Tìm hai số tự nhiên $a,b\left( {a < b} \right).$ Biết $a + b = 20,BCNN\left( {a,b} \right) = 15.$
Gọi ƯCLN$\left( {a,b} \right) = d$ $ \Rightarrow a = d.m,b = d.n;\left( {m,n} \right) = 1$
$ \Rightarrow a + b = d\left( {m + n} \right)$ $ \Rightarrow d \in $ Ư$\left( {a + b} \right)$ hay $d \in $Ư$\left( {20} \right)$
Vì $BCNN\left( {a,b} \right) = 15$ \( \Rightarrow 15 \vdots d\) hay $d \in $Ư$\left( {15} \right)$
$ \Rightarrow d \in $ ƯC$\left( {15;20} \right)$
Mà ƯCLN$\left( {15;20} \right) = 5$ nên $d = 1$ hoặc $d = 5$
+) Nếu $d = 1 \Rightarrow a.b = 1.15 = 15 = 3.5$
Khi đó $a + b = 3 + 5 = 8$ (loại)
Hoặc $a + b = 1 + 15 = 16$ (loại)
+) Nếu $d = 5$ thì $a.b = 5.15 = 75 = 1.75$
Khi đó $a + b = 15 + 5 = 20$ (thỏa mãn)
Hoặc $a + b = 1 + 75 = 76$ (loại)
Vậy hai số cần tìm là $a = 5;b = 15.$
Một số tự nhiên \(a\) khi chia cho \(7\) dư \(4;\) chia cho \(9\) dư \(6.\) Tìm số dư khi chia \(a\) cho \(63.\)
Vì \(a\) chia cho \(7\) dư \(4 \Rightarrow \left( {a + 3} \right) \vdots 7\)
\(a\) chia cho \(9\) dư \(6\) \( \Rightarrow \left( {a + 3} \right) \vdots 9\)
Do đó \(\left( {a + 3} \right) \in BC\left( {7;9} \right)\) mà \(BCNN\left( {7;9} \right) = 63.\)
Do đó \(\left( {a + 3} \right) \vdots 63 \Rightarrow a\) chia cho \(63\) dư \(60.\)
BCNN(10, 15, 30) là:
Ta có: 30 là bội của 10 và 15
=> BCNN(10, 15, 30) = 30.
Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng BCNN(a,b)=300.
BCNN(a,b) = 300
BC(a,b) là bội của 300.
=> Tất cả các số có 3 chữ số là bội chung của a và b là: 300, 600, 900
Vậy có tất cả 3 số có ba chữ số là bội của a và b.
Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông
thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ
200 đến 300 bông.
- Gọi số bông sen chị Hòa có là: x (bông, \(x \in \mathbb{N}\)).
- Nếu chị bó thành các bỏ bông gồm 3 bông, 5 bông hay 7 bông thì số bông sen chị Hòa có là bội chung của 3, 5 và 7.
- Theo đề bài ta có xe BC(3, 5, 7) và 200 < x < 300
Vì 3, 5, 7 từng đôi một là số nguyên tố cùng nhau.
=> BCNN(3, 5, 7) = 105
=> BC(3, 5, 7) = B(105) = {0; 105, 210, 315;...}
=> x\( \in \) BC(3, 5, 7) ={0, 105, 210, 315,.... }.
Mà \(200 \le x \le 300\) nên x = 210.
Vậy số bông sen chị Hòa có là 210 bông.
Lịch xuất bến của một số xe buýt tại bến xe Mỹ Đình (Hà Nội) được ghi ở bảng bên. Giả sử các xe buýt xuất bến cùng lúc vào 10 giờ 35 phút. Hỏi vào sau bao lâu thì cả 3 xe xuất bến cùng một lúc lần nữa (kể từ lần đầu tiên)?
Thời gian các xe cùng xuất bến cách 10h35p các khoảng thời gian là BC(9, 10, 15)
Ta có: 9 = \({3^2}\), 10 = 2.5, 15 = 3.5.
Thừa số chung và riêng là 2, 3 và 5
Số mũ lớn nhất của 2 là 1
Số mũ lớn nhất của 3 là 2
Số mũ lớn nhất của 5 là 1
=> BCNN(9, 10, 15) = \({2.3^2}.5\) = 90
Vậy cứ 90 phút thì các xe xuất bến cùng một lúc.
54 và 108 có bội chung nhỏ nhất là
$54={{2.3}^{3}}$
$108={{2}^{2}}{{.3}^{3}}$
Các thừa số chung của 54 và 108 là 2 và 3.
Số mũ lớn nhất của 2 là 2
Số mũ lớn nhất của 3 là 3.
\(BCNN(54,108)={{2}^{2}}{{.3}^{3}}=108\)
Thực hiện các phép tính sau:\(\dfrac{3}{8} + \dfrac{5}{{24}}\). Với kết quả là phân số tối giản.
Ta có BCNN(8; 24) = 24 nên:
\(\dfrac{3}{8} + \dfrac{5}{{24}} = \dfrac{{3.3}}{{8.3}} + \dfrac{5}{{24}} = \dfrac{9}{{24}} + \dfrac{5}{{24}} = \dfrac{{14}}{{24}} = \dfrac{7}{{12}}\)