Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
Ta có \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\)
\( = 2\left[ {\left( {195 + 5} \right):8 + 195} \right] - 400\)
\( = 2\left[ {200:8 + 195} \right] - 400\)
\( = 2\left( {25 + 195} \right) - 400\)
\( = 2.220 - 400\)
\( = 440 - 400\)
\( = 40\)
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)
\( = {3^4}.6 - \left( {131 - {6^2}} \right)\)
\( = 81.6 - \left( {131 - 36} \right)\)
\( = 486 - 95 = 391.\)
Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).
\(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
\(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)
Giá trị nào dưới đây của \(x\) thỏa mãn \({2^4}.x - {3^2}.x = 145 - 255:51?\)
Ta có \({2^4}.x - {3^2}.x = 145 - 255:51\)
\(16.x - 9.x = 145 - 5\)
\(x\left( {16 - 9} \right) = 140\)
\(x.7 = 140\)
\(x = 140:7\)
\(x = 20.\)
Câu nào dưới đây là đúng khi nói đến giá trị của \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\) ?
Ta có \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\)
\( = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - 8.5} \right)} \right]} \right\}\)
\( = 18.\left\{ {420:6 + \left[ {150 - \left( {136 - 40} \right)} \right]} \right\}\)
\( = 18.\left[ {420:6 + \left( {150 - 96} \right)} \right]\)
\( = 18.\left( {70 + 54} \right)\)
\( = 18.124\)
\( = 2232.\)
Vậy \(A = 2232.\)
Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được
Ta có \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\)
\( = {10^3}:{5^3} + {10^4}:{5^3} + {125^2}:{5^3}\)
\( = {\left( {2.5} \right)^3}:{5^3} + {\left( {2.5} \right)^4}:{5^3} + {\left( {{5^3}} \right)^2}:{5^3}\)
\( = {2^3}{.5^3}:{5^3} + {2^4}{.5^4}:{5^3} + {5^6}:{5^3}\)
\( = {2^3} + {2^4}.5 + {5^3}\)
\( = 8 + 16.5 + 125\)
$ = 8 + 80 + 125 = 213.$
Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
Ta có \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132\)
\(23 + \left( {13 + 72 - x} \right) = 240 - 132\)
\(23 + \left( {85 - x} \right) = 108\)
\(85 - x = 108 - 23\)
\(85 - x = 85\)
\(x = 85 - 85\)
\(x = 0.\)
Có một giá trị \(x = 0\) thỏa mãn đề bài.
Giá trị của \(x\) thỏa mãn \(65 - {4^{x + 2}} = {2020^0}\) là
Ta có \(65 - {4^{x + 2}} = {2020^0}\)
$65 - {4^{x + 2}} = 1$
\({4^{x + 2}} = 65 - 1\)
\({4^{x + 2}} = 64\)
\({4^{x + 2}} = {4^3}\)
\(x + 2 = 3\)
\(x = 3 - 2\)
\(x = 1.\)
Vậy \(x = 1.\)
Cho \(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\) và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\). Chọn câu đúng.
\(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\)
\( = 4.\left\{ {{3^2}.\left[ {\left( {25 + 8} \right):11} \right] - 26} \right\} + 2002\)
\( = 4.\left[ {{3^2}.\left( {33:11} \right) - 26} \right] + 2002\)
\( = 4.\left( {{3^2}.3 - 26} \right) + 2002\)
\( = 4.\left( {27 - 26} \right) + 2002\)
\( = 4.1 + 2002\)
\( = 4 + 2002\)
\( = 2006.\)
Và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\)
\( = 134 - \left[ {150:5 - \left( {120:4 + 25 - 30} \right)} \right]\)
\( = 134 - \left[ {150:5 - \left( {30 + 25 - 30} \right)} \right]\)
\( = 134 - \left( {150:5 - 25} \right)\)
\( = 134 - \left( {30 - 25} \right)\)
\( = 134 - 5\)
\( = 129\)
Vậy \(A = 2006\) và \(B = 129\) nên \(A > B.\)
Tính nhanh: \(\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\) ta được kết quả là
\(\begin{array}{l}\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right)\left( {36.3.111 - 36.3.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right).0\\ = 0\end{array}\)
Trong một cuộc thi có \(20\) câu hỏi. Mỗi câu trả lời đúng được \(10\) điểm, mỗi câu trả lời sai bị trừ \(3\) điểm. Một học sinh đạt được \(148\) điểm. Hỏi bạn đã trả lời đúng bao nhiêu câu hỏi?
Giả sử bạn học sinh đó trả lời đúng cả \(20\) câu thì tổng số điểm đạt được là \(10.20 = 200\) (điểm)
Số điểm dư ra là \(200 - 148 = 52\) (điểm)
Thay mỗi câu trả lời sai thành câu trả lời đúng thì dư ra \(10 + 3 = 13\) (điểm)
Số câu trả lời sai là \(52:13 = 4\) (câu)
Số câu trả lời đúng \(20 - 4 = 16\) (câu)
Gọi \({x_1}\) là giá trị thỏa mãn \({5^{x - 2}} - {3^2} = {2^4} - \left( {{2^8}{{.2}^4} - {2^{10}}{{.2}^2}} \right)\) và \({x_2}\) là giá trị thỏa mãn \(697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\) . Tính \({x_1}.{x_2}\).
\(\begin{array}{l}{\rm{ + )}}\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{2^{8 + 4}} - {2^{10 + 2}}} \right)\\{5^{x - 2}} - {3^2} = {2^4} - \left( {{2^{12}} - {2^{12}}} \right)\\{5^{x - 2}} - {3^2} = {2^4} - 0 = {2^4}\\{5^{x - 2}} - 9 = 16\\{5^{x - 2}} = 16 + 9\\{5^{x - 2}} = 25\\{5^{x - 2}} = {5^2}\\x - 2\,\, = 2\\x\,\, = 2 + 2\\x = 4.\end{array}\)
\(\begin{array}{l}{\rm{ + )}}\,697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\\\left( {15x + 364} \right):x = 697:17\\\left( {15x + 364} \right):x = 41\\15 + 364:x = 41\\364:x = 41 - 15\\364:x = 26\\x = 364:26\\x = 14\end{array}\)
Vậy \({x_1} = 4;\,{x_2} = 14\) nên \({x_1}.{x_2} = 4.14 = 56.\)
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)
\(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)