Trong các số sau, số nào là ước của $12$?
Ư$\left( {12} \right) = \left\{ {1;2;3;4;6;12} \right\}$
Tìm tất cả các các bội của $3$ trong các số sau: $4;18;75;124;185;258$
Vì $18 \vdots 3;75 \vdots 3;258 \vdots 3$ nên đáp án đúng là D.
Tìm $x$ thuộc ước của $60$ và $x > 20$.
$\,\left\{ \begin{array}{l}x \in Ư\left( {60} \right)\\x > 20\end{array} \right. \Rightarrow \,\left\{ \begin{array}{l}x \in {\rm{\{ 1;2;3;4;}}\,{\rm{5;6;}}10{\rm{;12;15;20;30;60\} }}\\x > 20\end{array} \right.$
$ \Rightarrow x \in \left\{ {30;60} \right\}$
Tìm tập hợp các bội của $6$ trong các số: $6;15;24;30;40$.
Trong các số trên thì $B\left( 6 \right) = \left\{ {6;24;30} \right\}$
Có bao nhiêu số vừa là bội của $5$ vừa là ước của $50$?
Gọi $x$ là số vừa là bội của $5$ vừa là ước của $50$.
\(\left\{ \begin{array}{l}x \in B\left( 5 \right)\\x \in Ư\left( {50} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \in {\rm{\{ 0;}}\,{\rm{5;10;15;20;25;}}...{\rm{\} }}\\x \in {\rm{\{ 1;2;5;10;25;50\} }}\end{array} \right.\)
\( \Rightarrow \,x\, \in \,{\rm{\{ 5;10;25;50\} }}\)
Khẳng định nào sau đây sai?
Với \(a\) là số tự nhiên khác 0 thì:
Đáp án C sai vì không có số nào chia được cho 0.
0 không bao giờ là ước của một số tự nhiên bất kì.
Khẳng định nào sau đây đúng?
Ta có: 16:1=16; 16:2=8; 16:4=4; 16:8=2; 16:16=1
Các ước của 16 là 1;2;4;8;16.
=> Ư\(\left( {16} \right) = \left\{ {1;2;4;8;16} \right\}\)
5 là phần tử của
Ta có: Ư\(\left( {15} \right)\) là tập hợp các ước của 15.
Mà 5 là một ước của 15 nên 5 là phần tử của Ư\(\left( {15} \right)\)
Khẳng định nào sau đây đúng?
Ta lấy 2 nhân với từng số 0 thì được 0 nên 0 là bội của 2, lấy 2.1=2 nên 2 là bội của 2, 2.2=4 nên 4 là bội của 2,...
Vậy B\(\left( 2 \right) = \left\{ {0;2;4;6;8;...} \right\}\)
Số 26 không là phần tử của
Ta có 26 chia hết cho 2, 13, 26 nên 26 là bội của 3 số này. Hay 26 là phần tử của \(B\left( 2 \right)\), \(B\left( {13} \right)\), \(B\left( {26} \right)\).
26 không chia hết cho 3 nên 26 không là bội của 3.
Vậy 26 không là phần tử của \(B\left( 3 \right)\)