Bài tập cuối chương VI

Sách cánh diều

Đổi lựa chọn

Câu 1 Trắc nghiệm

Có bao nhiêu đường thẳng đi qua hai điểm phân biệt A và B?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Có 1 và chỉ 1 đường thẳng đi qua 2 điểm phân biệt cho trước. Vậy có duy nhất 1 đường thẳng đi qua hai điểm A và B.

Câu 2 Trắc nghiệm

Em hãy chọn phát biểu sai trong các phát biểu sau:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

+ Góc bẹt là góc có hai cạnh là hai tia đối nhau (đúng loại A)

+ \(\widehat A\) được gọi là góc tù nếu \(\widehat A > {90^0}\) (sai vì \(\widehat A\) được gọi là góc tù nếu \({90^0} < \widehat A < {180^0}\), chọn B)                            

 + Nếu tia Ot là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)(đúng loại C)

 + Tam giác MNP là hình gồm các đoạn thẳng MN, MP và NP khi ba điểm M, N, P không thẳng hàng. (đúng loại D)                                  

Câu 3 Trắc nghiệm

Cho hình vẽ. Em hãy chọn đáp án đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Quan sát hình vẽ ta thấy điểm B nằm giữa hai điểm A và C.

Câu 4 Trắc nghiệm

Cho điểm M nằm giữa điểm N và P như hình vẽ. Kết luận nào sau đây là đúng ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Nhận xét:

+ Đáp án A: Hai tia NM và MP là hai tia không chung gốc nên loại đáp án A.

+ Đáp án B: Hai tia MP và NP là hai tia không chung gốc nên loại đáp án B.

+ Đáp án C: thấy hai tia PN và PM là hai tia cùng chung gốc P và tạo thành nửa đường thẳng nên hai tia PN và PM là hai tia trùng nhau, do đó chọn đáp án C.

+ Đáp án D: Hai tia MN và MP là hai tia chung gốc nhưng tạo thành một đường thẳng nên hai tia MN và MP là hai tia đối nhau, do đó loại đáp án D.

Câu 5 Trắc nghiệm

Cho hình vẽ:

Hình vẽ trên có bao nhiêu tia chung gốc B:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Hình vẽ trên có các tia chung gốc B là: BA, Bx, By, BC và BD. Vậy có tất cả 5 tia chung gốc B.

Câu 6 Trắc nghiệm

Cho ba điểm không thẳng hàng $O, A, B.$ Tia $Ox$ nằm giữa hai tia $OA, OB$ khi và chỉ khi tia $Ox$ cắt

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tia $Ox$ nằm giữa hai tia $OA$ và $OB$ khi tia $Ox$ cắt đoạn thẳng $AB$

Câu 7 Trắc nghiệm

Cho hình vẽ sau. Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta thấy hai đường thẳng xy và ab cắt nhau tại M nên đáp án C đúng.

Câu 8 Trắc nghiệm

Cho hình vẽ sau. Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Từ hình vẽ ta thấy \(P \in a;P \in c\) nên đáp án A sai; \(Q \in b;Q \in c\) nên đáp án B đúng.

Hai đường thẳng a và c cắt nhau tại điểm C nên đáp án C sai.

Đáp án D sai vì ta thấy có ba cặp đường thẳng cắt nhau trên hình vẽ là a và c, a và b, b và c.

Câu 9 Trắc nghiệm

Vẽ ba đường thẳng phân biệt bất kì, số giao điểm của ba đường thẳng đó không thể là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Với 3 đường thẳng phân biệt ta có các trường hợp sau:

+ Không có đường thẳng nào cắt nhau nên không có điểm chung.

+ Hai đường thẳng cắt nhau, đường thẳng còn lại không cắt hai đường thẳng đó, khi đó có 1 điểm chung.

+ Ba đường thẳng đó có đôi một cắt nhau thì có ba điểm chung.

Vậy không thể có trường hợp ba đường thẳng phân biệt bất kì mà có 4 điểm chung.

Câu 10 Trắc nghiệm

Cho hình vẽ. Em hãy chọn khẳng định sai:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Từ hình vẽ ta thấy các điểm M, N, I cùng thuộc một đường thẳng.

+) Hai tia NM và NI đối nhau vì chúng chung gốc N và tạo thành một đường thẳng, từ đó loại đáp án A.

+) Hai tia IN và IM trùng nhau vì chúng chung gốc I và  có thêm điểm chung là N, từ đó loại đáp án B.

+) Hai tia MN và MI trùng nhau vì chúng chung gốc M và  có thêm điểm chung là N, từ đó loại đáp án C.

+) Hai tia MN và NI không trùng nhau vì chúng không chung gốc.

Câu 11 Trắc nghiệm

Cho L là điểm nằm giữa hai điểm I và K. Biết $IL = 2cm,{\rm{ }}LK = 5cm.$ Độ dài của đoạn thẳng IK là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì L nằm giữa I và K nên ta có:\(IL + LK = IK \Rightarrow IK = 2 + 5 = 7cm\)

Câu 12 Trắc nghiệm

Biết $IL = 4cm;{\rm{ }}LK = 5cm$ điều kiện để điểm I nằm giữa hai điểm L và K là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Điều kiện để điểm I nằm giữa hai điểm L và K là: 
\(IL + IK = LK\) nên \(4 + IK = 5 \Rightarrow IK = 5 - 4 = 1cm\)

Vậy điều kiện để điểm I nằm giữa hai điểm L và K là $IK = 1cm\;$

Câu 13 Trắc nghiệm

Cho điểm I thuộc đoạn thẳng AB. Biết $AI = 5cm,AB = 8cm.$ Tính độ dài $BI.$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì điểm Ihuộc đoạn thẳng AB; $AI = 5cm,{\rm{ }}AB = 8cm$ mà $5cm < 8cm$ nên $AI < AB\;$

Suy ra điểm I nằm giữa hai điểm A và B 
$ \Rightarrow AI + IB = AB \Rightarrow 4cm + IB = 7cm \Rightarrow IB = 7cm - 4cm = 3cm$

Câu 14 Trắc nghiệm

Cho đoạn thẳng $BC = 32cm.$ Gọi G là trung điểm của đoạn thẳng $BC,{\rm{ }}H$ là trung điểm của đoạn thẳng $GC.$ Khi đó, độ dài của đoạn thẳng BH là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì G là trung điểm của đoạn thẳng BC nên ${\rm{BG  = }}\,GC = \dfrac{1}{2}BC = \dfrac{1}{2} \cdot 32 = 16\,cm$.

Vì H là trung điểm của đoạn thẳng GC nên ${\rm{GH }} = HC = {\rm{ }}\dfrac{1}{2}GC = \dfrac{1}{2} \cdot 16 = 8\,cm$.

Ta có G thuộc đoạn thẳng BC nên GB và GC là hai tia đối nhau. (1)

 Vì H là trung điểm của GC nên H thuộc GC (2)

Từ (1) và (2) suy ra G là điểm nằm giữa hai điểm B và H.

\(\begin{array}{l} \Rightarrow BG + GH = BH\\ \Rightarrow 16 + 8 = BH\\ \Rightarrow BH = 24cm\end{array}\)

Câu 15 Trắc nghiệm

Lấy bốn điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng. Cứ qua hai điểm ta vẽ một đường thẳng. Số đường thẳng có thể vẽ được là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được các đường thẳng đi qua hai điểm bất kì như sau:

+ Với điểm M ta có thể nối với các điểm: N, P, Q, K để tạo thành 4 đường thẳng phân biệt.

+ Với điểm N ta có thể nối với các điểm: P, Q, K để tạo thành 3 đường thẳng phân biệt.

+ Với điểm P ta có thể nối với các điểm: Q, K để tạo thành 2 đường thẳng phân biệt.

+ Với điểm Q ta có thể nối với điểm K để tạo thành 1 đường thẳng .

Vậy từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được tất cả:

4 + 3 + 2 + 1 = 10 đường thẳng phân biệt.

Câu 16 Trắc nghiệm

Cho trước 6 điểm trong đó có 4 điểm thẳng hàng. Vẽ các đoạn thẳng đi qua các cặp điểm. Hỏi vẽ được bao nhiêu đoạn thẳng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì qua 2 điểm luôn vẽ được một đoạn thẳng 
Nên qua 6 điểm vẽ được số đoạn thẳng là: 
\(\dfrac{{6\left( {6 - 1} \right)}}{2} = 15\) (đoạn thẳng) 

Câu 17 Trắc nghiệm

Cho M thuộc đoạn thẳng AB, $AM = 4cm,{\rm{ }}AB = 6cm.$ Gọi O là trung điểm của đoạn AB.

Tính $MO$.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

+) Vì \(M \in AB\) nên M nằm giữa A và B

\( \Rightarrow AM + MB = AB \Rightarrow BM \)\(= AB - MB = 6 - 4 = 2cm.\)

+) Vì O là trung điểm của AB nên: \(AO = OB = \dfrac{{AB}}{2} \)\(= \dfrac{6}{2} = 3cm\)

Vì \(O \in AB\), \(M \in AB\) và \(AO < AM (3cm < 4cm)\) nên O nằm giữa A và M suy ra:

\(AO + OM = AM \Rightarrow OM\)\( = AM - AO = 4 - 3 = 1cm\)

Câu 18 Trắc nghiệm

Cho M thuộc đoạn thẳng AB, $AM = 4cm,{\rm{ }}AB = 6cm.$ Gọi O là trung điểm của đoạn AB.

Trên AB lấy điểm I sao cho AI = 3,5cm. Lấy điểm P là trung điểm của AO. Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+ ) Vì \(O \in AB\), \(I \in AB\) và AO < AI (3cm < 3,5cm) nên O nằm giữa A và I suy ra:

\(AO + OI = AI \)\(\Rightarrow OI = AI - AO = 3,5 - 3 = 0,5cm\) (1)

Vì \(I \in AB\), \(M \in AB\) và AI < AM (3,5cm < 4cm) nên I nằm giữa A và M suy ra:

\(AI + IM = AM \Rightarrow IM = AM - AI = 4 - 3,5 = 0,5cm\)(2)

Từ (1) và (2) suy ra $OI = IM$ . (3)

Vì O nằm giữa A và I nên A và O nằm cùng phía đối với I . Mà I nằm giữa A và M nên A và M nằm khác phía đối với I \( \Rightarrow \) O và M nằm khác phía đối với I suy ra I nằm giữa M và O (4)

Từ (3) và (4) suy ra I là trung điểm của OM.

+) Vì P là trung điểm của AO nên: \(OP = AP = \dfrac{{AO}}{2} = \dfrac{3}{2} = 1,5cm\)

Vì $\left\{ \begin{array}{l}O,M \in AB\\AO < AM\left( {3cm < 4cm} \right)\end{array} \right. \Rightarrow $ O nằm giữa A và M

Suy ra A và M nằm khác phía đối với O

Vì P là trung điểm của AO nên A, P cùng phía đối với O.

Vì I là trung điểm của OM nên I, M cùng phía đối với O.

Từ đó suy ra I nằm giữa O và P \( \Rightarrow OP + IO = IP \)\(\Rightarrow IP = 1,5 + 0,5 = 2cm\)

Câu 19 Trắc nghiệm

Cho \(100\) tia gồm \(O{x_2},O{x_3},....,O{x_{99}}\) nằm giữa hai tia \(O{x_1}\) và \(O{x_{100}}\). Hỏi có bao nhiêu góc được tạo thành?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

- \(O{x_1}\) cùng với các tia \(O{x_2},O{x_3},....,O{x_{100}}\) tạo thành \(99\) góc.

- \(O{x_2}\) cùng với các tia \(O{x_3},....,O{x_{100}}\) tạo thành 98 góc.

- \(O{x_3}\) cùng với các tia \(O{x_4},O{x_5},....,O{x_{100}}\) tạo thành \(97\)góc.

…………

\(O{x_{99}}\) cùng tia \(O{x_{100}}\) tạo thành 1 góc.

Vậy ta có tất cả: \(1 + 2 + 3 + ... + 99 = \dfrac{{100.99}}{2} = 4950\) góc.

Câu 20 Trắc nghiệm

Cho 24 điểm trong đó có 6 điểm thẳng hàng. Qua 2 điểm ta kẻ được một đường thẳng. Hỏi kẻ được tất cả bao nhiêu đường thẳng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Giả sử trong 24 điểm không có 3 điểm nào thẳng hàng tất cả vẽ được: 
$\dfrac{{24.(24 - 1)}}{2} = 276$ (đường thẳng) 
Qua 6 điểm thẳng hàng vẽ được số đường thẳng là: $\dfrac{{6.(6 - 1)}}{2} = 15$ (đường thẳng) 
Nhưng qua 6 điểm thẳng hàng chỉ vẽ được một đường thẳng 
Nên qua 24 điểm trong đó có 6 điểm thẳng hàng vẽ được: 
$276 - 15 + 1 = 262$ (đường thẳng)