Cho các số sau: \(1280;\, - 291;\;\,43;\, - 52;\;\,28;\;\,1;\;\,0\) . Các số đã cho sắp xếp theo thứ tự giảm dần là:
Các số được xếp theo thứ tự giảm dần là: \(1280;\,\;43;\,\;28;\;\,1;\;\,0;\, - 52;\, - 291.\)
Cho \(E = \left\{ {3;\, - 8;\,0} \right\}\) . Tập hợp F gồm các phần tử của E và các số đối của chúng là?
Tập hợp F gồm các phần tử của E và \(E = \left\{ {3; - \,8;\,0} \right\}\) nên $3; - 8;0$ là các phần tử của tập F
Số đối của 3 là -3
Số đối của -8 là 8
Số đối của 0 là 0
Do đó tập hợp F gồm các phần tử của E và các số đối của chúng là \(F = \left\{ {3;\, - 8;\;\,0;\, - 3;\;\,8} \right\}\)
Cho \(x - 236\) là số đối của số 0 thì x là:
Số đối của số 0 là 0.
Vì \(x - 236\) là số đối của số 0 nên
\(\begin{array}{l}x - 236 = 0\\x\;\;\;\;\;\;\;\;\; = 0 + 236\\x\;\;\;\;\;\;\;\;\; = 236.\end{array}\)
Tính tổng của các số nguyên x, biết: $ - 7 < \;x \le {\rm{5}}.$
Vì $ - 7 < \;x \le {\rm{5}}$ nên $x\; \in \;\left\{ { - 6; - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5} \right\}$
Tổng các số nguyên $x$ là:
$( - 6) + ( - 5) + ( - 4) + ( - 3) + ( - 2) + ( - 1) + 0 + 1 + 2 + 3 + 4 + 5$$ = \left( { - 6} \right) + [( - 5) + 5\left] { + \left[ {\left( { - 4} \right) + 4} \right] + } \right[( - 3) + 3\left] + \right[( - 2) + 2\left] + \right[( - 1) + 1] + 0$$ = ( - 6) + 0 + 0 + 0 + 0 + 0 + 0 = - 6$
Bỏ ngoặc rồi tính: $\left( {52 - 69 + 17} \right) - \left( {52 + 17} \right)\;$ ta được kết quả là
Ta có:
$(52 - 69 + 17) - (52 + 17) = 52 - 69 + 17 - 52 - 17 = (52 - 52) + (17 - 17) - 69 = 0 + 0 - 69 = - 69$
Tìm x biết: $17 - \left( {x + 84} \right) = 107$
Ta có $17 - \left( {x + 84} \right) = 107$
\(\begin{array}{l}x + 84 = 17 - 107\\x + 84 = - \left( {107 - 17} \right)\\x + 84 = - 90\\x = - 90 - 84\\x = - \left( {90 + 84} \right)\\x = - 174\end{array}\)
Vậy \(x = - 174.\)
Tìm $x$ biết: $44 - x - 16{\rm{ }} = - 60$
Ta có $44 - x - 16{\rm{ }} = - 60$
\(\begin{array}{l}\left( {44 - 16} \right) - x = - 60\\28 - x = - 60\\x = 28 - \left( { - 60} \right)\\x = 28 + 60\\x = 88\end{array}\)
Vậy \(x = 88.\)
Chọn câu trả lời đúng:
Vì \(\left( { - 9} \right) + 19 = 10;\,\;19 + \left( { - 9} \right) = 10\) nên \(\left( { - 9} \right) + 19 = 19 + \left( { - 9} \right)\).
Do đó câu A đúng, câu B, C sai.
Vì \(\left( { - 9} \right) + \left( { - 9} \right) = - 18;\,19 + 19 = 38;\, - 18 \ne 38\) nên câu D sai.
Thực hiện phép tính $455 - 5.\left[ {\left( { - 5} \right) + 4.\left( { - 8} \right)} \right]$ ta được kết quả là
Ta có
$\begin{array}{l}455 - 5.[( - 5) + 4.( - 8)]\\ = 455 - 5.( - 5 - 32)\\ = 455 - 5.[ - (5 + 32)]\\ = 455 - 5.( - 37)\\ = 455 + 185\\ = 640\end{array}$
Nhận thấy \(640\, \vdots \,10\) nên chọn A.
Tính $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\;$
Ta có $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\; = 108 - \left( { - 78} \right) = 108 + 78 = 186$
Thực hiện phép tính \( - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\) ta được kết quả là
\(\begin{array}{l} - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\\ = - 567 - \left( { - 113} \right) + \left( { - 69} \right) - 113 + 567\\ = \left( { - 567 + 567} \right) - \left( { - 113 + 113} \right) + \left( { - 69} \right)\\ = 0 - 0 + \left( { - 69} \right)\\ = - 69.\end{array}\)
Tìm $x,$ biết: $\left( {x - 12} \right).\left( {8 + x} \right) = 0$
Ta có $\left( {x - 12} \right).\left( {8 + x} \right) = 0$
TH1:
\(\begin{array}{l}x - 12 = 0\\x = 12\end{array}\)
TH2:
\(\begin{array}{l}8 + x = 0\\x = - 8\end{array}\)
Vậy \(x = 12\); \(x = - 8.\)
Tính \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\) ta được kết quả là
Ta có \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\)
$\begin{array}{l} = - 4.[12:4 - ( - 12)] - 144 \\= - 4.(3 + 12) - 144 = - 4.15 - 144\\ = - 60 - 144 = - (60 + 144) = - 204\end{array}$
Cho \(A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\) . Chọn câu đúng.
\(\begin{array}{l}A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\\ = - 128.\left( { - 25} \right) - 128.89 + 128.89 + 128.\left( { - 125} \right)\\ = \left( { - 128.89 + 128.89} \right) - \left[ {128.\left( { - 25} \right) - 128.\left( { - 125} \right)} \right]\\ = 0 - 128.\left[ {\left( { - 25} \right) + 125} \right]\\ = - 128.100\\ = - 12800.\end{array}\)
Vậy giá trị của A là số chẵn, số âm có chữ số tận cùng là 0 và không chia hết cho 3.
Cho \({x_1}\) là số nguyên thỏa mãn \({\left( {x + 3} \right)^3}:3 - 1 = - 10\) . Chọn câu đúng.
\(\begin{array}{l}{\left( {x + 3} \right)^3}:3 - 1 = - 10\\{\left( {x + 3} \right)^3}:3= - 10 + 1\\{\left( {x + 3} \right)^3}:3= - 9\\{\left( {x + 3} \right)^3} = \left( { - 9} \right).3\\{\left( {x + 3} \right)^3} = - 27\\{\left( {x + 3} \right)^3} = {\left( { - 3} \right)^3}\\x + 3 = - 3\\x= - 3 - 3\\x= - 6.\end{array}\)
Vậy \({x_1} = - 6 < - 5\).
Cho \(x \in \mathbb{Z}\) và $-5$ là bội của \(x + 2\) thì giá trị của x bằng:
Ta có: -5 là bội của \(x + 2\) suy ra \(x + 2\) là ước của -5.
Mà \(U\left( { - 5} \right) = \left\{ { \pm 1;\, \pm 5} \right\}\) nên suy ra \(x + 2 \in \left\{ { \pm 1;\, \pm 5} \right\}\)
Xét bảng:
Vậy \(x \in \left\{ { - 1;\,3;\, - 3;\, - 7} \right\}\) .
Khi \(x = - 12\) giá trị của biểu thức \(\left( {x - 8} \right)\left( {x + 17} \right)\) là:
Thay \(x = - 12\) vào biểu thức ta được:
\(\begin{array}{l}\left( { - 12 - 8} \right)\left( { - 12 + 17} \right)\\ = \left( { - 20} \right).5\\ = - 100\end{array}\)
Cho x là số nguyên và \(x + 1\) là ước của 5 thì giá trị của x là:
Ta có: \(\left( {x + 1} \right) \in U\left( 5 \right) \Rightarrow \left( {x + 1} \right) \in \left\{ { - 5;\, - 1;\;\,1;\,\;5} \right\}.\)
Xét bảng:
Vậy \(x \in \left\{ {0;\,4;\, - 2;\, - 6} \right\}\) .
Chọn câu đúng nhất. Với \(a,b,c \in \mathbb{Z}\) :
+ Đáp án A: Xét \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\), với \(a,b,c,d \in \mathbb{Z}\)
\(\begin{array}{l}VT = a\left( {b - c} \right) - a\left( {b + d} \right)\\ = ab - ac - ab - ad\\ = \left( {ab - ab} \right) - \left( {ac + ad} \right)\\ = 0 - a\left( {c + d} \right)\\ = - a\left( {c + d} \right)\\ = VP\end{array}\)
Vậy \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\) với \(a,b,c,d \in \mathbb{Z}\) hay A đúng.
+ Đáp án B: Với \(a,\,b,\,c \in \mathbb{Z}\) xét \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)
\(\begin{array}{l}VT = a\left( {b + c} \right) - b\left( {a - c} \right)\\\,\,\,\,\,\,\, = ab + ac - ba + bc\\\,\,\,\,\,\,\, = \left( {ab - ba} \right) + \left( {ac + bc} \right)\\\,\,\,\,\,\,\, = 0 + c\left( {a + b} \right)\\\,\,\,\,\,\,\, = c\left( {a + b} \right)\\VP = \left( {a + b} \right)c\\ \Rightarrow VT = VP\end{array}\)
Vậy \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\) Hay B đúng.
Vậy cả A, B đều đúng
Tìm các số $x,{\rm{ }}y,{\rm{ }}z$ biết: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$.
Ta có: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$ nên
\(\begin{array}{l}\left( {x + y} \right) + \left( {y + z} \right) + \left( {z + x} \right) = 11 + 10 + \left( { - 3} \right)\\ \Leftrightarrow x + y + y + z + z + x = 21 + \left( { - 3} \right)\\ \Leftrightarrow \left( {x + x} \right) + \left( {y + y} \right) + \left( {z + z} \right) = 18\\ \Leftrightarrow 2x + 2y + 2z = 18\\ \Leftrightarrow 2\left( {x + y + z} \right) = 18\\ \Leftrightarrow x + y + z = 9\end{array}\)
Vậy \(x + y + z = 9.\)
+) $z = (x + y + z) - (x + y) = 9 - 11 = - 2$
+)$x = (x + y + z) - (y + z) = 9 - 10 = - 1$
+) $y = (x + y + z) - (x + z) = 9 - \left( { - 3} \right) = 12$
Vậy \(x = - 1;y = 12;z = - 2.\)