Cho hai đường thẳng \(a;b.\) Khi đó \(a;b\) có thể
Hai đường thẳng \(a,b\) bất kì có thể trùng nhau, song song hoặc cắt nhau.
Chọn hình vẽ có hai đường thẳng vuông góc với nhau:
Quan sát các hình đã cho ta thấy hình thứ nhất có hai đường thẳng vuông góc với nhau.
Chọn câu đúng.
Đáp án A: Qua hai điểm phân biệt có một và chỉ một đường thẳng nên A sai.
Đáp án B: Có vô số điểm cùng thuộc một đường thẳng nên B đúng.
Đáp án C: Hai đường thẳng phân biệt thì có thể song song hoặc cắt nhau nên C sai.
Đáp án D: Trong ba điểm thẳng hàng chỉ có một điểm nằm giữa hai điểm còn lại nên D sai.
Chọn hình vẽ có hai đường thẳng song song với nhau:
Quan sát các hình đã cho ta thấy hình thứ ba từ trên xuống dưới có hai đường thẳng song song với nhau.
Cho hình vẽ như sau:
Cạnh AH vuông góc với cạnh nào dưới đây?
A. BH, HC và BC
A. BH, HC và BC
A. BH, HC và BC
Quan sát hình vẽ ta thấy AH vuông góc với các cạnh là HB, HC và BC.
Điền số thích hợp vào ô trống:
Trong hình đã cho có
cặp cạnh song song với nhau.
Trong hình đã cho có
cặp cạnh song song với nhau.
Trong hình trên có ED song song với AH.
Vậy hình đã cho có \(1\) cặp cạnh song song với nhau.
Đáp án đúng điền vào ô trống là \(1\) .
Cho $3$ đường thẳng $a,{\rm{ }}b,{\rm{ }}c$ phân biệt. Trong trường hợp nào thì ba đường thẳng đó đôi một không có giao điểm?
Ba đường thẳng đôi một không có giao điểm nghĩa là:
+ \(a,b\) không có giao điểm hay \(a\) song song \(b\)
+ \(b,c\) không có giao điểm hay \(b\) song song \(c\)
+ \(a,c\) không có giao điểm hay \(a\) song song \(c\)
Vậy ba đường thẳng đôi một song song.
Cho hình vẽ như sau :
Cạnh DE song song với mấy cạnh, đó là những cạnh nào?
C. \(3\) cạnh, đó là BC, GH, IK
C. \(3\) cạnh, đó là BC, GH, IK
C. \(3\) cạnh, đó là BC, GH, IK
Quan sát hình ta thấy cạnh DE song song với \(3\) cạnh là BC, GH, IK.
Cho đường thẳng $m$ và đường thẳng $n$ cắt nhau tại $A,$ đường thẳng $a$ không cắt đường thẳng $m$ nhưng cắt đường thẳng $n$ tại $B.$ Hãy chọn hình vẽ đúng trong các hình sau?
Hình A: Có đường thẳng $m$ cắt đường thẳng $n$ tại $A,$ đường thẳng $a$ cắt đường thẳng $m$ tại $B$ nhưng không cắt đường thẳng $n$ (trái với đề bài là $a$ cắt $n$ tại $B$ ) (loại)
Hình B: Đường thẳng $m$ cắt đường thẳng $n$ tại $A,{\rm{ }}a$ cắt m tại $C,$ cắt $n$ tại $B$ (trái với đề bài là $a$ không cắt $m$) (loại)
Hình C: Đường thẳng $m$ cắt đường thẳng $n$ tại $A,$ đường thẳng $a$ cắt đường thẳng $n$ tại $B$ và $a$ không cắt $m$ (thỏa mãn)
Hình D: Đường thẳng $a$ cắt đường thẳng $m$ tại $B$ (trái với đề bài là \(a\) không cắt \(m\)) (loại)
Điền số thích hợp vào ô trống:
Trong hình có
cặp cạnh vuông góc với nhau,
cặp cạnh song song.
Trong hình có
cặp cạnh vuông góc với nhau,
cặp cạnh song song.
Hình đã cho có:
- \(2\) cặp cạnh vuông góc là MN và MT; TM và TQ.
- \(1\) cặp cạnh song song là MN và TQ.
Vậy đáp án đúng điền vào ô trống lần lượt từ trái sang phải là \(2\,\,;\,\,1\).
Cho hình vẽ như sau:
Cạnh PQ vuông góc với những cạnh nào?
D. Tất cả các đáp án trên đều đúng
D. Tất cả các đáp án trên đều đúng
D. Tất cả các đáp án trên đều đúng
Quan sát hình vẽ ta thấy cạnh PQ vuông góc với các cạnh là PE, PD, QH, QG, DE, GH.
Cho hình vẽ sau:
Trong hình trên có bao nhiêu cặp cạnh song song với nhau?
A. \(10\) cặp
A. \(10\) cặp
A. \(10\) cặp
Hình vẽ đã cho có:
- Cạnh AB song song với cạnh CD.
- Cạnh AB song song với cạnh MN .
- Cạnh AB song song với cạnh PQ.
- Cạnh AB song song với cạnh RT.
- Cạnh CD song song với cạnh MN.
- Cạnh CD song song với cạnh PQ.
- Cạnh CD song song với cạnh RT .
- Cạnh MN song song với cạnh PQ.
- Cạnh MN song song với cạnh PT.
- Cạnh PQ song song với cạnh RT.
Vậy trong hình đã cho có \(10\) cặp cạnh song song với nhau.