Có bao nhiêu số nguyên n thỏa mãn \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) ?
Ta có:
\(2n - 1 = 2n + 2 - 3 = \left( {2n + 2} \right) - 3 = 2\left( {n + 1} \right) - 3\)
Vì \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) nên \(\left[ {2\left( {n + 1} \right) - 3} \right] \vdots \left( {n + 1} \right)\) .
Mà \(2\left( {n + 1} \right) \vdots \left( {n + 1} \right)\) , suy ra \( - 3 \vdots \left( {n + 1} \right) \Rightarrow n + 1 \in U\left( { - 3} \right) = \left\{ { \pm 1;\, \pm 3} \right\}\) .
Ta có bảng sau:
Vậy \(n \in \left\{ { - 4;\, - 2;\,0;\,2} \right\}\)
Do đó có 4 số nguyên \(n\) thỏa mãn đề bài.
Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .
Vì \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) nên suy ra \(n + 3\) và \(n - 2\) là hai số trái dấu.
TH1: \(\left\{ \begin{array}{l}n + 3 > 0\\n - 2 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > 0 - 3\\n < 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > - 3\\n < 2\end{array} \right. \Leftrightarrow - 3 < n < 2 \Rightarrow n \in \left\{ { - 2;\, - 1;\;\,0;\;\,1} \right\}\) vì \(n \in Z.\)
TH2: \(\left\{ \begin{array}{l}n + 3 < 0\\n - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < 0 - 3\\n > 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < - 3\\n > 2\end{array} \right.\) suy ra không có giá trị nào của n thỏa mãn.
Vậy \(n \in \left\{ { - 2;\, - 1;\,\;0;\;\,1} \right\}\).
Tổng các số nguyên thỏa mãn là \(\left( { - 2} \right) + \left( { - 1} \right) + 0 + 1 = - 2.\)
Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)
\(C = - {\left( {x - 5} \right)^2} + 10\)
Ta có: \({\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\)\( \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\)
Suy ra \(C \le 10\,\,\forall x \in \mathbb{Z}\) .
\(C = 10\) khi \({\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\)
Vậy giá trị lớn nhất của C là 10 khi \(x = 5\) .