Phương pháp quy nạp toán học

  •   
Bài viết trình bày nội dung phương pháp quy nạp toán học và cách áp dụng nó trong một số bài toán chứng minh.

1. Kiến thức cần nhớ

Bài toán:

Gọi P(n) là một mệnh đề chứa biến n(nN). Chứng minh P(n) đúng với mọi số tự nhiên nN.

Phương pháp quy nạp toán học:

- Bước 1: Chứng minh P(n) đúng với n=1.

- Bước 2: Với k là một số nguyên dương tùy ý, giả sử P(n) đúng với n=k1, chứng minh P(n) cũng đúng khi n=k+1.

Đối với bài toán chứng minh P(n) đúng với mọi np với p là số tự nhiên cho trước thì:

- Bước 1: Chứng minh P(n) đúng với n=p.

- Bước 2: Với kp là một số nguyên dương tùy ý, giả sử P(n) đúng với n=k, chứng minh P(n) cũng đúng khi n=k+1.

Ví dụ: Chứng minh n7n chia hết cho 7 với mọi nN.

Giải:

Đặt P(n)=n7n.

- Với n=1 thì P(1)=171=07 nên P(1) đúng.

- Giả sử mệnh đề đúng với n=kN, tức là P(k)=(k7k)7.

Ta phải chứng minh mệnh đề đúng với n=k+1, tức là: P(k+1)=(k+1)7(k+1)7

Ta có:

(k+1)7(k+1)=C07.k7+C17.k6+C27.k5+C37.k4+C47.k3+C57.k2+C67.k+C77(k+1)=k7+7k6+21k5+35k4+35k3+21k2+7k+1k1=(k7k)+7(k6+3k5+5k4+5k3+3k2+k)

Do k7k77(k6+3k5+5k4+5k3+3k2+k)7 nên P(k+1)=(k+1)7(k+1)7.

Vậy mệnh đề đã cho đúng.

2. Một số dạng toán thường gặp

Dạng 1: Chứng minh mệnh đề.

Phương pháp:

Sử dụng phương pháp quy nạp toán học đã nêu ở trên.

Dạng 2: Tìm công thức tổng quát cho tổng dãy số.

Phương pháp:

- Bước 1: Dự đoán công thức tổng quát cho tổng dãy số.

- Bước 2: Sử dụng phương pháp quy nạp toán học để chứng minh công thức vừa dự đoán.

Câu hỏi trong bài