Phương pháp giải tập chiều dài CLLX - Lực đàn hồi, lực hồi phục của CLLX

Bài viết trình bày phương pháp giải các dạng bài: Tính chiều dài của lò xo trong quá trình vật dao động, lực kéo về, lực đàn hồi , lực hồi phục cực đại, cực tiểu

I. Phương pháp giải bài tập chiều dài CLLX - lực đàn hồi, lực hồi phục của con lắc lò xo

CÁC DẠNG BÀI TẬP - PHƯƠNG PHÁP GIẢI

1. Dạng 1: Tính chiều dài của lò xo trong quá trình vật dao động

Gọi chiều dài tự nhiên của lò xo là l0.

- Khi con lắc lò xo nằm ngang:

Phương pháp giải tập chiều dài CLLX - Lực đàn hồi, lực hồi phục của CLLX - ảnh 1

+ Lúc vật ở VTCB, lò xo không bị biến dạng, 

+ Chiều dài cực đại của lò xo: \({l_{{\rm{max}}}} = {l_0} + A\)

+ Chiều dài cực tiểu của lò xo: \({l_{{\rm{min}}}} = {l_0} - A\)

+ Chiều dài ở li độ x: \(l = {l_0} + x\)

- Khi con lắc lò xo bố trí thẳng đứng hoặc nằm nghiêng một góc αvà treo ở dưới.

Phương pháp giải tập chiều dài CLLX - Lực đàn hồi, lực hồi phục của CLLX - ảnh 2

+ Độ biến dạng của lò xo khi vật ở VTCB: 

  • Con lắc lò xo treo thẳng đứng: \(\Delta {l_0} = \frac{{mg}}{k}\)
  • Con lắc lò xo nằm nghiêng góc α: \(\Delta {l_0} = \frac{{mg\sin \alpha }}{k}\)

+ Chiều dài lò xo khi vật ở VTCB: \({l_{vtcb}} = {l_0} + \Delta l\)

+ Chiều dài ở li độ x: \(l = {l_0} + \Delta {l_0} + x\)

+ Chiều dài cực đại của lò xo: \({l_{{\rm{max}}}} = {l_0} + \Delta {l_0} + A\)

+ Chiều dài cực tiểu của lò xo: \({l_{{\rm{min}}}} = {l_0} + \Delta {l_0} - A\)

2. Dạng 2: Lực kéo về

\(F{\rm{ }} =  - {\rm{ }}kx{\rm{ }} =  - {\rm{ }}m{\omega ^2}x\)

    Đặc điểm:

* Là lực gây dao động cho vật.

* Luôn hướng về VTCB

* Biến thiên điều hoà cùng tần số với li độ

3. Dạng 3: Lực đàn hồi - Lực hồi phục cực đại, cực tiểu.

Có độ lớn \({F_{dh}} = {\rm{ }}k{x^*}\)  (x* là độ biến dạng của lò xo)

- Với con lắc lò xo nằm ngang thì lực kéo về và lực đàn hồi là một (vì tại VTCB lò xo không biến dạng)

Phương pháp giải tập chiều dài CLLX - Lực đàn hồi, lực hồi phục của CLLX - ảnh 3

- Với con lắc lò xo thẳng đứng hoặc đặt trên mặt phẳng nghiêng:

Phương pháp giải tập chiều dài CLLX - Lực đàn hồi, lực hồi phục của CLLX - ảnh 4

+ Độ lớn lực đàn hồi có biểu thức:

  • \({F_{dh}} = {\rm{ }}k|\Delta {l_0} + {\rm{ }}x|\) với chiều dương hướng xuống
  • \({F_{dh}} = k\left| {\Delta {l_0} - {\rm{ }}x} \right|\) với chiều dương hướng lên

+ Lực đàn hồi cực đại (lực kéo): \({F_{{\rm{max}}}} = k\left( {\Delta {l_0} + A} \right) = {F_{Km{\rm{ax}}}}\) (lúc vật ở vị trí thấp nhất)

+ Lực đàn hồi cực tiểu:

  • Nếu\(A{\rm{ }} < \Delta {l_0} \to {F_{Min}} = {\rm{ }}k(\Delta {l_0} - {\rm{ }}A) = {F_{KMin}}\)
  • Nếu \(A{\rm{ }} \ge \Delta {l_0} \to {F_{Min}} = 0\)  (lúc vật đi qua vị trí lò xo không biến dạng)

+ Lực đẩy (lực nén) đàn hồi cực đại: ${F_{Nm{\rm{ax}}}} = k\left( {A - \Delta {l_0}} \right)$ (lúc vật ở vị trí cao nhất)

+ Lực đàn hồi, lực hồi phục:

  • Lực đàn hồi:

    \(\begin{array}{l}{F_{dh}} = k(\Delta l + x){\rm{ }}\\ \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{F_{d{h_{{\rm{Max}}}}}} = k(\Delta l + A){\rm{                 }}}\\{{F_{d{h_{\min }}}} = k(\Delta l - A){\rm{ khi }}\Delta l > A}\\{{F_{d{h_{\min }}}} = 0{\rm{ khi}}\Delta {\rm{l}} \le {\rm{A             }}}\end{array}} \right.{\rm{      }}\end{array}\)

  •  Lực hồi phục: \({F_{hp}} = kx{\rm{ }} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{F_{h{p_{{\rm{Max}}}}}} = kA}\\{{F_{h{p_{\min }}}} = 0{\rm{ }}}\end{array}} \right.{\rm{ }}\)hay\({F_{hp}} = ma{\rm{ }} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{F_{h{p_{{\rm{Max}}}}}} = m{\omega ^2}A}\\{{F_{h{p_{\min }}}} = 0{\rm{        }}}\end{array}} \right.\)  

+ Lực hồi phục luôn hướng vào vị trí cân bằng.

Khi hệ dao động theo phương nằm ngang thì lực đàn hồi và lực hồi phục là như nhau ${F_{dh}} = {F_{hp}}$

II. Bảng so sánh lực lực hồi phục và lực đàn hồi

Phương pháp giải tập chiều dài CLLX - Lực đàn hồi, lực hồi phục của CLLX - ảnh 5
Câu hỏi trong bài