Phản ứng hạt nhân - Bài tập xác định động năng, vận tốc, góc của các hạt

Bài viết trình bày phương pháp xác định động năng, vận tốc và góc hợp bởi các hạt khi cho hạt nhân B bắn phá vào hạt nhân A đứng yên → C +D

Hạt nhân B bắn phá vào hạt nhân A đứng yên \( \to \) C+D

- Biết \({{\bf{W}}_{{d_{\bf{C}}}}} = {\rm{ }}{\bf{b}}{{\bf{W}}_{{d_{\bf{D}}}}}\)

Áp dụng định luật bảo toàn năng lượng

\(\begin{array}{l}{{\rm{W}}_{{d_B}}} + \left( {{m_A} + {m_B}} \right){c^2} = \left( {{m_C} + {m_D}} \right){c^2} + {{\rm{W}}_{{d_C}}} + {{\rm{W}}_{{d_D}}}\\ \leftrightarrow {{\rm{W}}_{{d_B}}} + \Delta E = {{\rm{W}}_{{d_C}}} + {{\rm{W}}_{{d_D}}}\end{array}\)

\( \to \left\{ \begin{array}{l}{{\rm{W}}_{{d_C}}} = \left( {{{\rm{W}}_{{d_B}}} + \Delta E} \right)\frac{b}{{b + 1}}\\{{\rm{W}}_{{d_D}}} = \left( {{{\rm{W}}_{{d_B}}} + \Delta E} \right)\frac{1}{{b + 1}}\end{array} \right.\)

- Biết tỉ số độ lớn vận tốc: \({{\bf{v}}_{\bf{C}}} = {\rm{ }}{\bf{a}}{{\bf{v}}_{\bf{D}}}\)

\({v_C} = {\rm{ }}a{v_D} \to \frac{{{{\rm{W}}_{{d_C}}}}}{{{{\rm{W}}_{{d_D}}}}} = \frac{{{m_C}{v_C}^2}}{{{m_D}{v_D}^2}} = \frac{{{m_C}}}{{{m_D}}}{a^2} = b\)

- Nếu \(\overrightarrow {{v_c}} = a\overrightarrow {{v_D}} \)

Áp dụng định luật bảo toàn động lượng: \(\overrightarrow {{P_t}}  = \overrightarrow {{P_s}}  \leftrightarrow {m_B}\overrightarrow {{v_B}}  = {m_C}\overrightarrow {{v_C}}  + {m_D}\overrightarrow {{v_D}} \)

\(\overrightarrow {{v_c}}  = a\overrightarrow {{v_D}}  \to {m_B}\overrightarrow {{v_B}}  = \left( {{m_C} + a{m_D}} \right)\overrightarrow {{v_C}} \)

- Nếu sau phản ứng có: \(\widehat {\overrightarrow {{v_C}} ,\overrightarrow {{v_D}} } = \alpha \)

\(\left\{ \begin{array}{l}P_B^2 = P_C^2 + P_D^2 + 2{P_C}{P_D}{\rm{cos}}\alpha \\{{\rm{W}}_{{d_B}}} + \Delta E = {{\rm{W}}_{{d_C}}} + {{\rm{W}}_{{d_D}}}\end{array} \right.\)

Trường hợp đặc biệt:

  • \(\overrightarrow {{v_C}} \bot \overrightarrow {{v_D}}  \to \left\{ \begin{array}{l}P_B^2 = P_C^2 + P_D^2\\{{\rm{W}}_{{d_B}}} + \Delta E = {{\rm{W}}_{{d_C}}} + {{\rm{W}}_{{d_D}}}\end{array} \right. \to \left\{ \begin{array}{l}{m_B}{{\rm{W}}_{{d_B}}} = {m_C}{{\rm{W}}_{{d_C}}} + {m_D}{{\rm{W}}_{{d_D}}}\\{{\rm{W}}_{{d_B}}} + \Delta E = {{\rm{W}}_{{d_C}}} + {{\rm{W}}_{{d_D}}}\end{array} \right.\)
  • \(\overrightarrow {{v_C}} \bot \overrightarrow {{v_B}}  \to \left\{ \begin{array}{l}P_D^2 = P_C^2 + P_B^2\\{{\rm{W}}_{{d_B}}} + \Delta E = {{\rm{W}}_{{d_C}}} + {{\rm{W}}_{{d_D}}}\end{array} \right. \to \left\{ \begin{array}{l}{m_D}{{\rm{W}}_{{d_D}}} = {m_C}{{\rm{W}}_{{d_C}}} + {m_B}{{\rm{W}}_{{d_B}}}\\{{\rm{W}}_{{d_B}}} + \Delta E = {{\rm{W}}_{{d_C}}} + {{\rm{W}}_{{d_D}}}\end{array} \right.\)
Câu hỏi trong bài