Phương pháp giải bài tập dịch nguồn - Đặt bản mỏng

Bài viết trình bày phương pháp giải dạng bài tập về giao thoa ánh sáng khi dịch chuyển nguồn sáng S và khi đặt trước khe S1 hoặc S2 một bản mỏng

1. DỊCH CHUYỂN NGUỒN SÁNG S

Phương pháp giải bài tập dịch nguồn - Đặt bản mỏng  - ảnh 1

Quang trình: đường đi của ánh sáng.

\(\left\{ \begin{array}{l}{S_1}:{d_1}' + {d_1}\\{S_2}:{d_2}' + {d_2}\end{array} \right. \to \) Tại vị trí vân trung tâm: \({d_1}' + {\rm{ }}{d_1} = {\rm{ }}{d_2}{\rm{' }} + {\rm{ }}{d_2} \to \left( {{d_1}{\rm{' }} + {\rm{ }}{d_1}} \right) - \left( {{d_2}{\rm{' }} + {\rm{ }}{d_2}} \right){\rm{ }} = {\rm{ }}0 = 0\frac{{\lambda D}}{a}\)

=> Tại O là vân trung tâm

Dịch nguồn S một khoảng \(\Delta x \to {d_1}';{d_1}\) thay dổi => Vị trí vân trung tâm thay đổi

\(\begin{array}{l}{d_1}{\rm{' }} + {\rm{ }}{d_1} = {\rm{ }}{d_2}{\rm{' }} + {\rm{ }}{d_2} \to \left| {{d_1}' - {d_2}'} \right| = \left| {{d_1} - {d_2}} \right|\\ \leftrightarrow \frac{{a\Delta x}}{d} = \frac{{{\rm{a}}{{\rm{x}}_0}}}{D} \to {x_0} = \frac{{\Delta xD}}{d}\end{array}\)

2. ĐẶT TRƯỚC S1 (HOẶC S2) MỘT LƯỠNG CHẤT PHẲNG CÓ BỀ DÀY e VÀ CHIẾT SUẤT n

Phương pháp giải bài tập dịch nguồn - Đặt bản mỏng  - ảnh 2

- Ta có:

  • Vận tốc ánh sáng trong lưỡng chất phẳng: \(v = \frac{c}{n}\)
  • Thời gian ánh sáng đi trong lưỡng chất phẳng: \(\Delta t = \frac{e}{v} = \frac{{en}}{c}\)

- Cũng trong thời gian ∆t đó thì ánh sáng đi ở môi trường ngoài 1 đoạn khác: \(\Delta x = c\Delta t = en\)

- Quang lộ: \({S_1}M = {d_1} + (n - 1)e\), \({S_2}M = {d_2} = {d_1}\)

=> Hiệu quang trình: \(\delta  = {S_2}M - {S_1}M = {d_2}-{d_1}-\left( {n-1} \right)e\)

Mà: \({d_2}-{d_1} = \frac{{ax}}{D} \to \delta  = \frac{{ax}}{D}-\left( {n-1} \right)e\)

Vân sáng trung tâm ứng với hiệu quang trình bằng \(\delta \)= 0.

\(\delta  = \frac{{{\rm{ }}a{x_0}}}{D}-\left( {n-1} \right)e = 0\)

Hay:                \({x_0} = \frac{{(n - 1)eD}}{a}\).

Hệ thống vân dịch chuyển về phía S1. Vì \({x_0} > 0\) .

Câu hỏi trong bài