Tích của một số với một vectơ

Sách cánh diều

Đổi lựa chọn

  •   
Định nghĩa tích của một vectơ với một số và quy ước

I. Định nghĩa tích của một vectơ với một số

Tích của vectơ a với số thực k0 là một vectơ, kí hiệu là ka, cùng hướng với a nếu k>0, ngược hướng với a nếu k<0 và có độ dài bằng |k||a|

Quy ước: 0a=0k0=0

II. Tính chất của phép nhân vectơ với một số

Với hai vectơ ab bất kì, với mọi số thực km, ta luôn có:

i)(k+m)a=ka+maii)k(a±b)=ka±kbiii)k(ma)=(km)aiv)ka=0[k=0a=0v)1a=a;(1)a=a

III. Một số ứng dụng tích của một vectơ với một số

1. Trung điểm của đoạn thẳng

Cho I là trung điểm AB và một điểm M bất kì, khi đó:

+) IA+IB=0.

+) MA+MB=2MI.

2. Trọng tâm của tam giác

Cho G là trọng tâm tam giác ABCM là một điểm bất kì, khi đó:

+) GA+GB+GC=0.

+) MA+MB+MC=3MG.

3. Điều kiện để hai vectơ cùng phương. Điều kiện để ba điểm thẳng hàng

Điều kiện cần và đủ để hai vectơ ab(b0) cùng phương là có một số thực k để a=kb.

Điều kiện cần và đủ để ba điểm phân biệt A,B,C thẳng hàng là có số thực k để AB=kAC.

Chú ý: Cho hai vectơ ab không cùng phương. Với mọi vectơ c luôn tồn tại duy nhất cặp số thực (m;n) sao cho c=ma+nb.

4. Phương pháp phân tích một véc tơ qua hai véc tơ không cùng phương:

Sử dụng các quy tắc ba điểm (xen thêm điểm vào giữa để làm xuất hiện các véc tơ không cùng phương đề bài yêu cầu), các tính chất trung điểm, trọng tâm, tích của một véc tơ với một số để biến đổi làm sao cho xuất hiện.

Chú ý: Cho đoạn thẳng AB, một điểm IAB thỏa mãn IA=kIB thì với điểm M bất kì ta luôn có:

MI=1k1MA+kk1MB