Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
Sách cánh diều
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \(\left( d \right):3x - 4y - 12 = 0\). Phương trình đường thẳng \(\left( \Delta \right)\) đi qua \(M\left( {2; - 1} \right)\) và tạo với \(\left( d \right)\) một góc \({45^o}\) có dạng \(ax + by + 5 = 0\), trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?
Đường thẳng \(\left( d \right)\) có VTPT \(\overrightarrow {{n_1}} = \left( {3; - 4} \right)\)
Đường thẳng \(\left( \Delta \right)\) có VTPT \(\overrightarrow {{n_2}} = \left( {a;b} \right)\)
\(\begin{array}{l} \Rightarrow \cos \left( {d;\Delta } \right) = \cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right) = \dfrac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \dfrac{{\left| {3a - 4b} \right|}}{{5\sqrt {{a^2} + {b^2}} }}\\ \Leftrightarrow \cos {45^o} = \dfrac{{\left| {3a - 4b} \right|}}{{5\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \dfrac{{\left| {3a - 4b} \right|}}{{5\sqrt {{a^2} + {b^2}} }} = \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sqrt 2 \left| {3a - 4b} \right| = 5\sqrt {{a^2} + {b^2}} \Leftrightarrow 2{\left( {3a - 4b} \right)^2} = 25\left( {{a^2} + {b^2}} \right)\\ \Leftrightarrow 7{a^2} + 48ab - 7{b^2} = 0\,\,\,\,\,\,\left( 1 \right)\end{array}\)
Mặt khác \(M\left( {2; - 1} \right) \in \Delta \Rightarrow 2a - b + 5 = 0 \Leftrightarrow b = 2a + 5\) thế vào (1)
\(\begin{array}{l} \Rightarrow 7{a^2} + 48a\left( {2a + 5} \right) - 7{\left( {2a + 5} \right)^2} = 0 \Leftrightarrow 75{a^2} + 100a - 175 = 0 \Leftrightarrow \left[ \begin{array}{l}a = 1 \Rightarrow b = 7\,\,\,\,\,(tm)\\a = - \dfrac{7}{3} \Rightarrow b = \dfrac{1}{3}\,\,\,(ktm)\end{array} \right.\\ \Rightarrow a + b = 8.\end{array}\)Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \(2x - y + 3 = 0\); \(x + 2y - 5 = 0\) và tọa độ một đỉnh là \(\left( {2;3} \right)\). Diện tích hình chữ nhật đó là:
Ta thấy \({d_1}:\,\,\,2x - y + 3 = 0;\,\,\,{d_2}:\,\,\,x + 2y - 5 = 0\) là hai đường thẳng vuông góc.
Giả sử hình chữ nhật bài cho là \(ABCD\) có: \(AB:\,\,\,2x - y + 3 = 0;\,\,\,AD:\,\,\,x + 2y - 5 = 0\)
Thay tọa độ điểm \(\left( {2;\,\,3} \right)\) vào các phương trình đường thẳng \(AB,\,\,AD\) ta thấy \(\left( {2;\,\,3} \right)\) không thuộc các đường thẳng trên \( \Rightarrow C\left( {2;\,3} \right).\)
\(\begin{array}{l} \Rightarrow {S_{ABCD}} = CB.CD = d\left( {C;\,\,AB} \right).d\left( {C;\,\,AD} \right)\\ = \dfrac{{\left| {2.2 - 3 + 3} \right|}}{{\sqrt {{2^2} + {1^2}} }}.\dfrac{{\left| {2 + 2.3 - 5} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \dfrac{4}{{\sqrt 5 }}.\dfrac{3}{{\sqrt 5 }} = \dfrac{{12}}{5}\,\,\,\left( {dvdt} \right)\end{array}\)
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng đi qua hai điểm \(A\left( {1;2} \right)\), \(B\left( {4;6} \right)\), tìm tọa độ điểm \(M\) trên trục \(Oy\) sao cho diện tích \(\Delta MAB\) bằng 1.
Gọi \(M\left( {0;m} \right) \in Oy;\,\,AB = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {6 - 2} \right)}^2}} = 5.\)
Có \({S_{\Delta MAB}} = \dfrac{1}{2}d\left( {M,AB} \right).AB\) \( \Leftrightarrow 1 = \dfrac{1}{2}.d\left( {M,AB} \right).5 \Leftrightarrow d\left( {M,AB} \right) = \dfrac{2}{5}\)
\(\overrightarrow {AB} = \left( {3;4} \right) \Rightarrow \overrightarrow n = \left( {4; - 3} \right)\) là 1 VTPT của AB.
\( \Rightarrow \) Phương trình AB: \(4\left( {x - 1} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 4x - 3y + 2 = 0\)
\( \Rightarrow d\left( {M,AB} \right) = \dfrac{{\left| { - 3m + 2} \right|}}{{\sqrt {{4^2} + {3^2}} }}\)\( \Leftrightarrow \dfrac{2}{5} = \dfrac{{\left| { - 3m + 2} \right|}}{5} \Leftrightarrow \left| { - 3m + 2} \right| = 2\)
\( \Leftrightarrow \left[ \begin{array}{l} - 3m + 2 = 2\\ - 3m + 2 = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0 \Rightarrow M\left( {0;0} \right)\\m = \dfrac{4}{3} \Rightarrow M\left( {0;\dfrac{4}{3}} \right)\end{array} \right.\)
Khoảng cách từ điểm M (–2; 2) đến đường thẳng Δ: \(5x - 12y + 8 = 0\)
\(d\left( {M;\Delta } \right) = \dfrac{{\left| { - 2.5 - 12.2 + 8} \right|}}{{\sqrt {{5^2} + {{12}^2}} }} = \dfrac{{26}}{{13}} = 2.\)