Tập hợp. Các phép toán trên tập hợp phần 2

Sách cánh diều

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho $A$  là tập hợp các ước nguyên dương của $24,{\rm{ }}B$  là tập hợp các ước nguyên dương của $18$ . Xác định tính sai của các kết quả sau:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \(A = \left\{ {1;2;3;4;6;8;12;24} \right\},B = \left\{ {1;2;3;6;9;18} \right\}\).

Do đó \(A\) có \(8\) phần tử, A đúng.

Tập hợp \(B\) có \(6\) phần tử, B đúng.

\(A \cup B = \left\{ {1;2;3;4;6;8;9;12;18;24} \right\}\) có \(10\) phần tử, C sai.

\(B\backslash A = \left\{ {9;18} \right\}\) có \(2\) phần tử.

Câu 22 Trắc nghiệm

Tìm $m$  để \(\left( { - 1;1} \right) \subset \left( {m;m + 3} \right)\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(\left( { - 1;1} \right) \subset \left( {m;m + 3} \right) \Leftrightarrow m \le  - 1 < 1 \le m + 3 \Leftrightarrow  - 2 \le m \le  - 1\).

Câu 23 Trắc nghiệm

Những tính chất nào sau đây chứng tỏ rằng $B$  là một tập con của $A$ ?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:

$A \cup B = A \Rightarrow B \subset A$ nên A đúng.

$A\backslash B = B$ không xảy ra với mọi tập hợp \(B\) nên B sai.

$A \cap B = A \Rightarrow A \subset B$ nên C sai.

$A \cup B = B \Rightarrow A \subset B$ nên D sai.

Câu 24 Trắc nghiệm

Tìm $m$ để \(\left[ { - 1;1} \right] \cap \left[ {m - 1;m + 3} \right] \ne \emptyset \)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

+) TH1: \( - 1 \le m - 1 \le 1 \Leftrightarrow  0 \le m \le 2\)

+) TH2: \(m - 1 \le  - 1 \le m + 3 \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge  - 4\end{array} \right. \Leftrightarrow  - 4 \le m \le 0\)

Kết hợp hai trường hợp trên ta được \(\left[ \begin{array}{l} 0 \le m \le 2\\ - 4 \le m \le 0\end{array} \right. \Leftrightarrow  - 4 \le m \le 2\)

Câu 25 Trắc nghiệm

Cho hai đa thức $f\left( x \right)$ và $g\left( x \right)$ . Xét các tập hợp :

\(\begin{array}{l}A = \left\{ {x \in R|f\left( x \right) = 0} \right\}\\B = \left\{ {x \in R|g\left( x \right) = 0} \right\}\\C = \left\{ {x \in R|\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = 0} \right\}\end{array}\)

Trong các mệnh đề sau, mệnh đề nào đúng ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \(C = \left\{ {x \in R|\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = 0} \right\} = \left\{ {x \in R|f\left( x \right) = 0,g\left( x \right) \ne 0} \right\}\)

Do đó \(C = A\backslash B\).

Câu 26 Trắc nghiệm

Giá trị của $a$  mà \(\left[ {a;\dfrac{{a + 1}}{2}} \right] \subset \left(( - \infty ; - 1) \cup (1; + \infty )\right)\) là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt \(B = \left( { - \infty ; - 1} \right),C = \left( {1; + \infty } \right),A = \left[ {a;\dfrac{{a + 1}}{2}} \right]\). Khi đó:

\(A \subset \left( {B \cup C} \right) \Leftrightarrow \left[ \begin{array}{l}\left[ {a;\dfrac{{a + 1}}{2}} \right] \subset \left( { - \infty ; - 1} \right)\\\left[ {a;\dfrac{{a + 1}}{2}} \right] \subset \left( {1; + \infty } \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a \le \dfrac{{a + 1}}{2} <  - 1\\1 < a \le \dfrac{{a + 1}}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2a \le a + 1 <  - 2\\2 < 2a \le a + 1\end{array} \right. \Leftrightarrow a <  - 3\)

Câu 27 Trắc nghiệm

Cho hai đa thức $f\left( x \right)$ và $g\left( x \right)$ . Xét các tập hợp :

$A = \left\{ {x \in R|f\left( x \right) = 0} \right\};\;B = \left\{ {x \in R|g\left( x \right) = 0} \right\};\;C = \left\{ {x \in R|{f^2}\left( x \right) + {g^2}\left( x \right) = 0} \right\}$

Trong các mệnh đề sau, mệnh đề nào đúng ?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có:

$\begin{array}{l}C = \left\{ {x \in R|{f^2}\left( x \right) + {g^2}\left( x \right) = 0} \right\}\\ \Rightarrow C = \left\{ {x \in R|f\left( x \right) = 0,g\left( x \right) = 0} \right\} = A \cap B\end{array}$

Câu 28 Trắc nghiệm

Cho $A$  là tập hợp các số tự nhiên chẵn không lớn hơn $10$ .

$B = \{ n \in N/n \le 6\} $  và $C = \{ n \in N/4 \le n \le 10\} $ .

Khi đó ta có câu đúng là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(\begin{array}{l}A = \left\{ {0;2;4;6;8;10} \right\}\\B = \left\{ {0;1;2;3;4;5;6} \right\}\\C = \left\{ {4;5;6;7;8;9;10} \right\}\\ \Rightarrow B \cup C = \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\\ \Rightarrow A \subset \left( {B \cup C} \right) \Rightarrow A \cap \left( {B \cup C} \right) = A\end{array}\)

Lại có:

\(\begin{array}{l}A\backslash B = \left\{ {8;10} \right\}\\A\backslash C = \left\{ {0;2} \right\}\\B\backslash C = \left\{ {0;1;2;3} \right\}\\ \Rightarrow \left( {A\backslash B} \right) \cup \left( {A\backslash C} \right) \cup \left( {B\backslash C} \right) = \left\{ {0;1;2;3;8;10} \right\}\end{array}\)

Câu 29 Trắc nghiệm

Lớp 10B1 có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả  Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10B1 là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10B1 là: 10 (học sinh).