Tổng các hệ số của tất cả các số hạng trong khai triển nhị thức \({\left( {x - 2y} \right)^{2020}}\) là:
Thay \(x = y = 1\) có \({\left( {1 - 2.1} \right)^{2020}} = {\left( { - 1} \right)^{2020}} = 1\).
Vậy tổng các hệ số của tất cả các số hạng trong khai triển nhị thức \({\left( {x - 2y} \right)^{2020}}\) bằng 1.
Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).
Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng nên \(n + 5 +1= 2019 \Leftrightarrow n = 2013\).
Cho \({\left( {1 + 2x} \right)^n} = {a_0} + {a_1}{x^1} + ... + {a_n}{x^n}.\) Biết \({a_0} + \dfrac{{{a_1}}}{2} + \dfrac{{{a_2}}}{{{2^2}}} + ... + \dfrac{{{a_n}}}{{{2^n}}} = 4096.\) Số lớn nhất trong các số \({a_0},{a_1},{a_2},...,{a_n}\) có giá trị bằng
Xét: \({\left( {1 + 2x} \right)^n} = {a_0} + {a_1}{x^1} + ... + {a_n}{x^n}.\)
Thay \(x = \dfrac{1}{2}\) vào 2 vế \( \Rightarrow {\left( {1 + 2.\dfrac{1}{2}} \right)^n} = {a_0} + {a_1}\dfrac{1}{2} + ... + {a_n}\dfrac{1}{{{2^n}}}\)
\( \Leftrightarrow {2^n} = 4096 \Leftrightarrow {2^n} = {2^{12}}\)\( \Leftrightarrow n = 12\)
\( \Rightarrow \) Biểu thức là: \({\left( {1 + 2x} \right)^{12}}\)
+ Số hạng tổng quát của khai triển là: \({T_{k + 1}} = C_{12}^k{.2^k}.{x^k}\)
\( + )\)Hệ số lớn nhất \( \Leftrightarrow y = C_{12}^k{.2^k}\) max \(\left( {0 \le k \le 12} \right)\)
Mà hệ số max \( \Rightarrow {k_{\max }}\)\( \Rightarrow \) Muốn \(k\) max thì k phải lớn hơn cả số hạng đứng trước nó là (k-1) và lớn hơn cả số hạng đứng sau nó là (k+1)
\( \Rightarrow \) Ta có hệ: \(\left\{ \begin{array}{l}C_{12}^{k - 1}{.2^{k - 1}} < C_{12}^k{.2^k}\,\,(1)\\C_{12}^{k + 1}{.2^{k + 1}} < C_{12}^k{.2^k}\,\,(2)\end{array} \right.\)
+ (1) \( \Leftrightarrow \)\(\dfrac{{12!}}{{\left( {k - 1} \right)!\,\,(12 - k + 1)!}}.\dfrac{{{2^k}}}{2} < \dfrac{{12!}}{{k!\,\,\left( {12 - k} \right)!}}{.2^k}\)
\( \Leftrightarrow \dfrac{1}{{(k - 1)!\,\,\left( {13 - k} \right)\left( {12 - k} \right)!}}.\dfrac{1}{2} < \dfrac{1}{{k\left( {k - 1} \right)!\,\,\left( {12 - k} \right)!}}\)
\( \Leftrightarrow \dfrac{1}{{2.\left( {13 - k} \right)}} < \dfrac{1}{k} \Leftrightarrow \dfrac{1}{{13 - k}} < \dfrac{2}{k}\)
+ (2) ta làm tương tự như trên\( \Rightarrow \dfrac{2}{{k + 1}} < \dfrac{1}{{12 - k}}\)
Từ (1) và (2) \( \Rightarrow \)\(\left\{ \begin{array}{l}\dfrac{1}{{13 - k}} < \dfrac{2}{k}\\\dfrac{2}{{k + 1}} < \dfrac{1}{{12 - k}}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}k < \dfrac{{26}}{3}\\k > \dfrac{{23}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k < 8,6\\k > 7,6\end{array} \right.\)(Mà k là số nguyên)\( \Rightarrow k = 8\)
\( \Rightarrow \)Hệ số lớn nhất trong khai triển biểu thức là: \(y\left( 8 \right) = \)\(C_{12}^8{.2^8} = 126720\)
Tìm hệ số của \({x^5}\) trong khai triển thành đa thức của \({\left( {2 - 3x} \right)^{2n}},\) biết \(n\) là số nguyên dương thỏa mãn: \(C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + ... + C_{2n + 1}^{2n} = 1024.\)
\( + )\)\(C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + ... + C_{2n + 1}^{2n} = 1024\)
\( \Leftrightarrow 2\left[ {C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + ... + C_{2n + 1}^{2n}} \right] = 2.1024\)
\( \Leftrightarrow \left( {C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + ... + C_{2n + 1}^{2n}} \right) + \left( {C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + ... + C_{2n + 1}^{2n}} \right) = 2.1024\)(*)
Vì \(C_n^k = C_n^{n - k}\)\( \Rightarrow \left\{ \begin{array}{l}C_{2n + 1}^0 = C_{2n + 1}^{2n + 1}\\C_{2n + 1}^1 = C_{2n + 1}^{2n}\\....\end{array} \right.\)\( \Rightarrow \)\(C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + ... + C_{2n + 1}^{2n} = C_{2n + 1}^{2n + 1} + ... + C_{2n + 1}^1\)
(Nói cách khác: Tổng các C có chỉ số chẵn = Tổng các C có chỉ số lẻ)
(*) \( \Rightarrow \)\(\left( {C_{2n + 1}^{2n + 1} + ... + C_{2n + 1}^1} \right) + \left( {C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + ... + C_{2n + 1}^{2n}} \right) = 2.1024\)
\( \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + C_{2n + 1}^3 + ... + C_{2n + 1}^{2n} + C_{2n + 1}^{2n + 1} = 2048\)
\( \Leftrightarrow {\left( {1 + 1} \right)^{2n + 1}} = 2048\)\( \Leftrightarrow {2^{2n + 1}} = 2048\)\( \Leftrightarrow 2n + 1 = 11\)\( \Leftrightarrow n = 5\)
\( + )\)Số hạng tổng quát của khai triển: \({\left( {2 - 3x} \right)^{10}}\)là: \({T_{k + 1}} = C_{10}^k{.2^{10 - k}}.{\left( { - 3} \right)^k}.{x^k}\)
Số hạng chứa \({x^5}\)\( \Rightarrow {x^5} = {x^k}\)\( \Leftrightarrow k = 5\)
\( \Rightarrow \) Hệ số của số hạng chứa\({x^5}\)là: \(C_{10}^5{.2^5}.{\left( { - 3} \right)^5} = - 1959552\)
Biết tổng các hệ số của khai triển nhị thức \({\left( {x + \dfrac{1}{{{x^2}}}} \right)^{3n}}\) là \(64.\) Tìm số hạng không chứa \(x.\)
\({\left( {x + \dfrac{1}{{{x^2}}}} \right)^{3n}} = C_{3n}^k.{{\rm{x}}^{3n - k}}.{\left( {\dfrac{1}{{{x^2}}}} \right)^k} = C_{3n}^k.{{\rm{x}}^{3n - 3k}} = C_{3n}^0.{x^{3n}} + ... + C_{3n}^{3n}.{x^0}\)(*)
+) Tổng các hệ số là: \(C_{3n}^0 + .. + C_{3n}^{3n} = 64\)
\( + )\)Thay \(x = 1\) vào cả 2 vế của (*) \( \Rightarrow \)\({2^{3n}} = C_{3n}^0 + ... + C_{3n}^{3n} \Leftrightarrow {2^{3n}} = 64\)\( \Rightarrow n = 2\)
\( + )\)Số hạng tổng quát của khai triển là:
\({T_{k + 1}} = C_{3n}^k.{x^{3n - k}}.{\left( {\dfrac{1}{{{x^2}}}} \right)^k}\)\( = C_6^k.{x^{6 - k}}.{\left( {{x^{ - 2}}} \right)^k}\)\( = C_6^k.{x^{6 - 3k}}\)
\( + )\)Số hạng không chứa \(x\)\( \Leftrightarrow 6 - 3k = 0 \Leftrightarrow k = 2\)
\( \Rightarrow \)Số hạng không chứa \(x\)là: \(C_6^2 = 15\)
Cho khai triển \({\left( {2 + 3x} \right)^{2021}} = {a_0} + {a_1}x + {a_2}{x^2}... + {a_{2021}}{x^{2021}}\). Hệ số lớn nhất trong khai triển đã cho là
Ta có: \({a_k} = C_{2021}^k{\left( {\dfrac{3}{2}} \right)^k}{.2^{2021}}\)
Giả sử \({a_k}\max \) khi đó
\(\begin{array}{l}\left\{ \begin{array}{l}{a_k} \ge {a_{k + 1}}\\{a_k} \ge {a_{k - 1}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{2021!}}{{k!\left( {2021 - k} \right)!}}.{\left( {\dfrac{3}{2}} \right)^k} = \dfrac{{2021!}}{{\left( {k + 1} \right)!\left( {2020 - k} \right)!}}.{\left( {\dfrac{3}{2}} \right)^{k + 1}}\\\dfrac{{2021!}}{{k!\left( {2021 - k} \right)!}}.{\left( {\dfrac{3}{2}} \right)^k} = \dfrac{{2021!}}{{\left( {k - 1} \right)!\left( {2022 - k} \right)!}}.{\left( {\dfrac{3}{2}} \right)^{k - 1}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{k + 1}}{{2021 - k}} \ge \dfrac{3}{2}\\\dfrac{{2022}}{k} \ge \dfrac{2}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{\left( {k + 1} \right).2 - 3.\left( {2021 - k} \right)}}{{2.\left( {2021 - k} \right)}} \ge 0\\\dfrac{{3\left( {2022 - k} \right) - 2k}}{{3k}} \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}1213 \le k \le 2021\\0 \le k \le 1213\end{array} \right. \Leftrightarrow k = 1213\end{array}\)