Một số bài toán về hàm số bậc hai

Sách cánh diều

Đổi lựa chọn

Câu 21 Trắc nghiệm

Một chiếc cổng parabol dạng \(y = \dfrac{{ - 1}}{2}{x^2}\) có chiều rộng \(d = 8m.\) Hãy tính chiều cao \(h\) của cổng ?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khoảng cách từ chân cổng đến trục đối xứng \(Oy\) là \(\dfrac{8}{2} = 4\). Hoành độ 2 chân cổng là \( - 4\) và \(4\).

Tung độ chân cổng là \(y = \dfrac{{ - 1}}{2}{.4^2} =  - 8\)

Chiều cao của cổng là \(\left| { - 8} \right| = 8m\)         

Câu 22 Tự luận

Một cái cổng hình parabol có dạng \(y =  - \dfrac{1}{2}{x^2}\) có chiều rộng \(d = 4m.\)

Tính chiều cao \(h\) của cổng (xem hình minh họa)

Cổng có chiều rộng 4m

Đáp án: \(h = \)

$m$

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: \(h = \)

$m$

Bước 1:

Gọi hai điểm chân cổng là \(A\left( {{x_A};{y_A}} \right)\) và \(B\left( {{x_B};{y_B}} \right)\) thì ta có \({y_A} = {y_B}\) và \(\left| {{x_A}} \right| = \left| {{x_B}} \right|.\)

Vì \(d = 4\) nên \(\left| {{x_A}} \right| = \left| {{x_B}} \right| = 2.\)

Bước 2: Tính $h$

Vậy \(h = \left| {{y_A}} \right| = \left| { - \dfrac{1}{2}x_A^2} \right| = \left| { - \dfrac{1}{2}{{.2}^2}} \right| = 2\,\left( m \right).\)

Câu 23 Trắc nghiệm

Đạn bắn ra từ 1 máy bắn đá có quỹ đạo là một parabol \((P)\). Biết rằng đạn của máy bắn đá bắn xa \(100\;{\rm{m}}\) và tại thời điểm đạn cao \(60\;{\rm{m}}\) thì đạn bị bắn xa \(80\;{\rm{m}}\) theo chiều song song với mặt đất.

Vị trí đạn bay cao nhất cách mặt đất bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Bước 1: Đặt hệ trục tọa độ. Gọi \((P):y = a{x^2} + bx + c\). Tìm (P).

Đặt hệ trục như hình vẽ.

Gọi \((P):y = a{x^2} + bx + c\).

Ta có \((P)\) qua \(O(0;0),A(80;60)\) và \(B(100;0)\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{c = 0}\\{{{80}^2}a + 80b = 60}\\{{{100}^2}a + 100b = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - \dfrac{3}{{80}}}\\{b = \dfrac{{15}}{4}}\end{array}} \right.} \right.\)

\( \Rightarrow (P):y =  - \dfrac{3}{{80}}{x^2} + \dfrac{{15}}{4}x\)

Bước 2: Tìm đỉnh của (P)

Vị trí đạn bay cao nhất cách mặt đất là \({y_I} =  - \dfrac{\Delta }{{4a}} =  - \dfrac{{{b^2} - 4ac}}{{4a}} = \dfrac{{375}}{4} = 93,75m\).

Câu 24 Trắc nghiệm

Đạn bắn ra từ 1 máy bắn đá có quỹ đạo là một parabol \((P)\). Biết rằng đạn của máy bắn đá bắn xa \(100\;{\rm{m}}\) và tại thời điểm đạn cao \(60\;{\rm{m}}\) thì đạn bị bắn xa \(80\;{\rm{m}}\) theo chiều song song với mặt đất.

Máy bắn đá cách tường thành địch \(90\;{\rm{m}}\). Biết tường thành cao \(30\;{\rm{m}}\). Hỏi chiều cao khi đạn bay đến tường thành thì cao hơn hay thấp hơn tường thành bao nhiêu mét?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\((P):y =  - \dfrac{3}{{80}}{x^2} + \dfrac{{15}}{4}x\).

Vì máy bắn đá cách tường thành địch 90 m nên \(x = 90 \Rightarrow y = 33,75(m) > 30(m)\)

\( \Rightarrow \) đạn pháo cao hơn tường thành 3,75m

Câu 25 Trắc nghiệm

Đạn bắn ra từ 1 máy bắn đá có quỹ đạo là một parabol \((P)\). Biết rằng đạn của máy bắn đá bắn xa \(100\;{\rm{m}}\) và tại thời điểm đạn cao \(60\;{\rm{m}}\) thì đạn bị bắn xa \(80\;{\rm{m}}\) theo chiều song song với mặt đất.

Địch xây chòi phòng thủ cao \(20\;{\rm{m}}\) phía trước tường thành. Hỏi phải đặt máy bắn đá cách chòi bao xa để đạn có thể bắn trúng chòi? Biết rằng để tránh bị địch tấn công thì máy bắn đá phải đặt cách thành địch ít nhất \(50\;{\rm{m}}\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Để máy bắn đá có thể bắn trúng chòi cao \(20\;{\rm{m}}\) thì

\( - \dfrac{3}{{80}}{x^2} + \dfrac{{15}}{4}x = 20 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 94,35(m)}\\{x = 5,65(m)(L)}\end{array}} \right.\)

Vậy cần đặt máy bắn đá cách chòi 94,35 m để đạn có thể bắn trúng chòi.