Tọa độ của vecto

Sách chân trời sáng tạo

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho \(A\left( {0;3} \right),\,B\left( {4;2} \right)\). Điểm \(D\) thỏa $\overrightarrow {OD} + 2\overrightarrow {DA}  - 2\overrightarrow {DB}  = \overrightarrow 0 $, tọa độ \(D\) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: $\overrightarrow {OD}  + 2\overrightarrow {DA}  - 2\overrightarrow {DB}  = \overrightarrow 0  \Leftrightarrow \left\{ \begin{array}{l}{x_D} - 0 + 2\left( {0 - {x_D}} \right) - 2\left( {4 - {x_D}} \right) = 0\\{y_D} - 0 + 2\left( {3 - {y_D}} \right) - 2\left( {2 - {y_D}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} =  - 2\end{array} \right.$.

Câu 22 Trắc nghiệm

Cho hình vuông \(ABCD\) cạnh \(a\). Hỏi mệnh đề nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương án  A: Do \(\overrightarrow {DA} .\overrightarrow {CB}  = DA.CB.\cos {0^0} = {a^2}\) nên loại A đúng, loại A.

Phương án  B: Do \(\overrightarrow {AB} .\overrightarrow {CD}  = AB.CD.\cos {180^{\rm{o}}} =  - {a^2}\) nên B đúng, loại B.

Phương án C: \(\left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right).\overrightarrow {AC}  = \overrightarrow {AC} .\overrightarrow {AC}  = A{C^2} = {\left( {a\sqrt 2 } \right)^2} = 2{a^2}\) nên C sai, chọn C.

Phương án D: \(\overrightarrow {AB} .\overrightarrow {AD}  + \overrightarrow {CB} .\overrightarrow {CD}  = 0\) đúng vì \(AB \bot AD,CB \bot CD\)

Câu 23 Trắc nghiệm

Tam giác \(ABC\) có \(C\left( { - 2; - 4} \right)\), trọng tâm \(G\left( {0;4} \right)\), trung điểm cạnh \(BC\) là \(M\left( {2;0} \right)\). Tọa độ \(A\) và \(B\) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \(M\left( {2;0} \right)\) là trung điểm \(BC\) nên \(\left\{ \begin{array}{l}2 = \dfrac{{{x_B} + ( - 2)}}{2}\\0 = \dfrac{{{y_B} + ( - 4)}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} = 4\end{array} \right. \Rightarrow B\left( {6;4} \right)\)

\(G\left( {0;4} \right)\)là trọng tâm tam giác \(ABC\) nên $\left\{ \begin{array}{l}0 = \dfrac{{{x_A} + 6 + ( - 2)}}{3}\\4 = \dfrac{{{y_A} + 4 + ( - 4)}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} =  - 4\\{y_A} = 12\end{array} \right. \Rightarrow A\left( { - 4;12} \right)$

Câu 24 Trắc nghiệm

Cho $\overrightarrow a = 3\overrightarrow i  - 4\overrightarrow j $ và $\overrightarrow b  = \overrightarrow i  - \overrightarrow j $. Tìm phát biểu sai:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: $\overrightarrow a  = 3\overrightarrow i  - 4\overrightarrow j  \Rightarrow \overrightarrow a \left( {3; - 4} \right)$ $ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{3^2} + {{\left( { - 4} \right)}^2}}  = 5$ nên A đúng.

$\overrightarrow b  = \overrightarrow i  - \overrightarrow j  \Rightarrow \overrightarrow b \left( {1; - 1} \right) $ $\Rightarrow \left| {\overrightarrow b } \right| = \sqrt {{1^2} + {{\left( { - 1} \right)}^2}}  = \sqrt 2 $ nên D đúng, B sai.

Ngoài ra $\overrightarrow a  - \overrightarrow b  = \left( {2; - 3} \right)$ nên C đúng.

Câu 25 Trắc nghiệm

Trong mặt phẳng $Oxy$, cho $B\left( {5; - 4} \right),C\left( {3;7} \right)$. Tọa độ của điểm $E$ đối xứng với $C$ qua $B$ là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: $E$ đối xứng với $C$ qua $B \Leftrightarrow B$ là trung điểm đoạn thẳng $EC$

Do đó, ta có: $\left\{ \begin{array}{l}5 = \dfrac{{{x_E} + 3}}{2}\\ - 4 = \dfrac{{{y_E} + 7}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = 7\\{y_E} =  - 15\end{array} \right. \Rightarrow E\left( {7; - 15} \right)$

Câu 26 Trắc nghiệm

Cho $A\left( {1;2} \right),\,B\left( { - 2;6} \right)$. Điểm $M$ trên trục $Oy$ sao cho ba điểm $A,B,M$ thẳng hàng thì tọa độ điểm $M$ là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: $M$ trên trục $Oy \Rightarrow M\left( {0;y} \right)$

Ba điểm $A,B,M$ thẳng hàng khi $\overrightarrow {AB} $ cùng phương với $\overrightarrow {AM} $

Ta có $\overrightarrow {AB}  = \left( { - 3;4} \right),\,\,\overrightarrow {AM}  = \left( { - 1;y - 2} \right)$.

Do đó, $\overrightarrow {AB} $ cùng phương với $\overrightarrow {AM}  \Leftrightarrow \dfrac{{ - 1}}{{ - 3}} = \dfrac{{y - 2}}{4} \Rightarrow y = \dfrac{{10}}{3}$.

Vậy $M\left( {0;\dfrac{{10}}{3}} \right)$

Câu 27 Trắc nghiệm

Trong mặt phẳng $Oxy$, gọi $B',B''$ và $B'''$ lần lượt là điểm đối xứng của $B\left( { - 2;7} \right)$ qua trục $Ox$,$Oy$ và qua gốc tọa độ $O$. Tọa độ của các điểm $B',\,B''$ và $B'''$ là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:

$B'$ đối xứng với $B\left( { - 2;7} \right)$ qua trục $Ox \Rightarrow B'\left( { - 2; - 7} \right)$.

$B''$ đối xứng với $B\left( { - 2;7} \right)$ qua trục $Oy \Rightarrow B''\left( {2;7} \right)$.

$B'''$ đối xứng với $B\left( { - 2;7} \right)$ qua gốc tọa độ $O \Rightarrow B'''\left( {2; - 7} \right)$.

Câu 28 Trắc nghiệm

Cho \(K\left( {1; - 3} \right)\). Điểm \(A \in Ox,B \in Oy\) sao cho \(A\) là trung điểm \(KB\). Tọa độ điểm \(B\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(A \in Ox,B \in Oy \Rightarrow A\left( {x;0} \right),B\left( {0;y} \right)\)

\(A\) là trung điểm $KB \Rightarrow \left\{ \begin{array}{l}x = \dfrac{{1 + 0}}{2}\\0 = \dfrac{{ - 3 + y}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{2}\\y = 3\end{array} \right.$.Vậy \(B\left( {0;3} \right)\).

Câu 29 Trắc nghiệm

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(MNP\) có \(M\left( {1; - 1} \right),\,N\left( {5; - 3} \right)\) và \(P\) thuộc trục \(Oy\),trọng tâm \(G\) của tam giác nằm trên trục \(Ox\).Toạ độ của điểm \(P\) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(P\) thuộc trục \(Oy \Rightarrow P\left( {0;y} \right)\), \(G\) nằm trên trục \(Ox \Rightarrow G\left( {x;0} \right)\)

\(G\) là trọng tâm tam giác \(MNP\)nên ta có: \(\left\{ \begin{array}{l}x = \dfrac{{1 + 5 + 0}}{3}\\0 = \dfrac{{( - 1) + ( - 3) + y}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 4\end{array} \right.\)

Vậy \(P\left( {0;4} \right)\).