Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Sách kết nối tri thức với cuộc sống

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho tam giác \(DEF\)  và tam giác \(HKG\)  có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), \(DE = HK.\) Biết \(\widehat F = {80^0}\). Số đo góc \(G\)  là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét tam giác \(DEF\)  và tam giác \(HKG\)  có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), \(DE = HK,\) do đó \(\Delta DEF = \Delta HKG\)(g.C.g).

Do đó \(\widehat G = \widehat F = {80^0}\) (hai góc tương ứng).

Câu 22 Trắc nghiệm

Cho tam giác $ABC$  có $M,N$ lần lượt là trung điểm của $AB,AC.$ Trên tia đối của tia $MC$  lấy $D$  sao cho $MD = MC$ . Trên tia đối của tia $NB$ lấy điểm $E$ sao cho $NE = NB.$

(I) \(\Delta AMD = \Delta BMC\)

(II) \(\Delta ANE = \Delta CNB\)

(III) $A,D,E$ thẳng hàng

(IV)  $A$ là trung điểm của đoạn thẳng $DE$

Số khẳng định đúng trong các khẳng định trên là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

(I) Xét \(\Delta AMD\) và \(\Delta BMC\) có: $DM = MC\left( {gt} \right);$ \(\widehat {BMC} = \widehat {AMD}\) (hai góc đối đỉnh); $AM = BM\left( {gt} \right),$ nên \(\Delta AMD = \Delta BMC\)(c.g.c).

(II) Xét \(\Delta ANE\) và \(\Delta CNB\) có: $AN = NC\left( {gt} \right);$ \(\widehat {ANE} = \widehat {CNB}\)(hai góc đối đỉnh), $NB = NE\left( {gt} \right),$ do đó

\(\Delta CNB = \Delta ANE\)(c.g.c).

(III) Do \(\Delta AMD = \Delta BMC\) nên \(\widehat D = \widehat {{C_1}}\)(hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên $AD//BC.$

Do  \(\Delta CNB = \Delta ANE\)nên \(\widehat E = \widehat {{B_1}}\)(hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên $AE//BC.$

Như vậy qua $A$  có hai đường thẳng $AD,AE$ cùng song song với $BC.$  

Do đó $D,A,E$ thẳng hàng. (1)

(IV) Ta có: $AD = BC$ (do \(\Delta AMD = \Delta BMC\)); $AE = BC$ (do \(\Delta CNB = \Delta ANE\)) nên $AD = AE\left( 2 \right)$

Từ (1) và (2) suy ra $A$  là trung điểm của $DE.$

Vậy cả (I); (II); (III); (IV) đều đúng.

Câu 23 Trắc nghiệm

Cho tam giác $ABC,D$ là trung điểm của $AB.$  Đường thẳng qua $D$  và song song với $BC$  cắt $AC$  ở $E,$  đường thẳng qua $E$  và song song với $AB$  cắt $BC$  ở $F.$ Khi đó

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét tam giác $DEF$  và tam giác $FBD$  có:

\(\widehat {{D_1}} = \widehat {{F_1}}\) (hai góc so le trong).

$DF$ là cạnh chung

\(\widehat {{F_2}} = \widehat {{D_2}}\) (hai góc so le trong).

Vậy \(\Delta DEF = \Delta FBD\,\,\,(g.c.g)\)

Suy ra $EF = BD$ (hai cạnh tương ứng)

 Mà $AD = BD$ nên $EF = AD$

Ta có : \(\widehat {{F_3}} = \widehat B\) (hai góc đồng vị); \(\widehat {{D_3}} = \widehat B\) (hai góc đồng vị)

 \( \Rightarrow \widehat {{D_3}} = \widehat {{F_3}}\left( { = \widehat B} \right).\).

Xét tam giác $ADE$ và tam giác $EFC$  có:

\(\widehat {{D_3}} = \widehat {{F_3}}\)(cmt)

\(\widehat A = \widehat {{E_1}}\)(hai góc đồng vị)

$AD = EF\left( {cmt} \right)$

 \( \Rightarrow \Delta ADE = \Delta EFC\,\,\,(g.c.g).\)  (1)

Tương tự ta chứng minh được \(\Delta EFC = \Delta DBF\,\,\,(g.c.g)\)     (2)

Từ (1) và (2) suy ra \(\Delta ADE = \Delta EFC = \Delta DBF\)                      (3)

Câu 24 Trắc nghiệm

Cho tam giác \(ABC\)  vuông tại \(A\)  có \(AB = AC.\) Qua \(A\) kẻ đường thẳng \(xy\)  sao cho \(B,C\) nằm cùng phía với \(xy.\) Kẻ \(BD\)  và \(CE\)  vuông góc với \(xy.\) Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \({\widehat A_1} + {\widehat A_2} = {90^0}\,\,\,\left( {do\,\,\,\widehat {BAC} = {{90}^0}} \right)\)

Mà \({\widehat A_1} + {\widehat B_2} = {90^0}\) (vì tam giác \(ABD\)  vuông tại \(D.\))

\( \Rightarrow {\widehat B_2} = {\widehat A_2}\)  (cùng phụ với \({\widehat A_1}\)).

Lại có \({\widehat A_2} + {\widehat C_1} = {90^0}\) (vì tam giác \(ACE\)  vuông tại \(E\) )

\( \Rightarrow {\widehat A_1} = {\widehat C_1}\) (cùng phụ với \({\widehat A_2}\)).

Xét hai tam giác \(BDA\)  và \(AEC\)  có:

\(\widehat {{B_2}} = \widehat {{A_2}}\); \(AB = AC\) (gt) và\(\widehat {{A_1}} = \widehat {{C_1}}\) (cmt)

\( \Rightarrow \Delta BA{\rm{D}} = \Delta ACE\) (g.c.g)

\( \Rightarrow \) \(BD = AE\) (hai cạnh tương ứng), \(CE = AD\) (hai cạnh tương ứng).

Do đó \(DE = AD + AE = CE + BD.\)

Câu 25 Trắc nghiệm

Cho hai đoạn thẳng \(AB\) và \(CD\) cắt nhau tại \(O\) là trung điểm của mỗi đoạn thẳng đó. Lấy \(E;\,F\) lần lượt là điểm thuộc đoạn \(AD\) và \(BC\) sao cho \(AE = BF.\) Cho \(OE = 2cm\), tính \(EF.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

 * Xét tam giác \(OBC\) và \(OAD\) có

+ \(OA = OB\,\left( {gt} \right)\)

+ \(\widehat {AOD} = \widehat {BOC}\) (đối đỉnh)

+ \(OC = OD\left( {gt} \right)\)

Suy ra \(\Delta OAD = \Delta OBC\left( {c - g - c} \right)\) nên \(\widehat {OAD} = \widehat {OBC}\)  (hai góc tương ứng)

* Xét tam giác \(OBF\) và \(OAE\) có

+ \(OA = OB\,\left( {gt} \right)\)

+ \(\widehat {OAD} = \widehat {OBC}\) (cmt)

+ \(BF = AE\left( {gt} \right)\)

Suy ra \(\Delta OBF = \Delta OAE\left( {c - g - c} \right)\) nên \(OE = OF\) (hai cạnh tương ứng) và \(\widehat {AOE} = \widehat {FOB}\)  (hai góc tương ứng)

Mà \(\widehat {FOB} + \widehat {FOA} = 180^\circ \) (hai góc kề bù) nên \(\widehat {FOA} + \widehat {AOE} = 180^\circ \)

Suy ra ba điểm \(F;\,O;E\) thẳng hàng và \(OE = OF\) nên \(O\) là trung điểm của \(EF \Rightarrow EF = 2.OE = 4\,cm.\)

Câu 26 Trắc nghiệm

Cho tam giác \(ABC\) có \(\widehat A = {60^0}.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D,\) tia phân giác của góc \(C\) cắt \(AB\) ở \(E.\) Các tia phân giác đó cắt nhau ở \(I.\) Tính độ dài \(ID,\) biết \(IE = 2cm.\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì \(BD\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}\widehat {ABC}\)

Vì \(CE\) là tia phân giác của \(\widehat {ACB}\) nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}\widehat {ACB}\)

Xét \(\Delta ABC\) có: \(\widehat A + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (tổng ba góc của một tam giác bằng \(180^\circ \))

Mà \(\widehat A = 60^\circ \) nên \(\widehat {ABC} + \widehat {ACB} = 180^\circ  - \widehat A = 180^\circ  - 60^\circ  = 120^\circ \)

Ta lại có: \(\widehat {{B_2}} + \widehat {{C_2}} = \dfrac{1}{2}\widehat {ABC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}(\widehat {ABC} + \widehat {ACB}) = \dfrac{1}{2}.120^\circ  = 60^\circ \)

Xét \(\Delta BIC\) có \(\widehat {BIC} + \widehat {{B_2}} + \widehat {{C_2}} = 180^\circ \) (tổng ba góc của một tam giác bằng \(180^\circ \))

Mà \(\widehat {{B_2}} + \widehat {{C_2}} = 60^\circ \) nên \(\widehat {BIC} = 180^\circ  - (\widehat {{B_2}} + \widehat {{C_2}}) = 180^\circ  - 60^\circ  = 120^\circ \)

Mặt khác: \(\widehat {BIC} + \widehat {BIE} = 180^\circ \) (hai góc kề bù) \( \Rightarrow \widehat {BIE} = 180^\circ  - \widehat {BIC} = 180^\circ  - 120^\circ  = 60^\circ \)

Khi đó \(\widehat {CID} = \widehat {BIE} = 60^\circ \) (hai góc đối đỉnh)  \((1)\)

Kẻ tia phân giác của \(\widehat {BIC}\) cắt \(BC\) tại \(H\)

Suy ra \(\widehat {BIH} = \widehat {HIC} = \dfrac{1}{2}.\widehat {BIC} = \dfrac{1}{2}.120^\circ  = 60^\circ \)\((2)\)

Từ \((1)\) và \((2)\) suy ra \(\widehat {CID} = \widehat {BIE} = \widehat {BIH} = \widehat {HIC}\)

Xét tam giác \(BIE\) và tam giác \(BIH\) có:

\(\widehat {{B_1}} = \widehat {{B_2}}\) (cmt)

\(BI\) là cạnh chung

\(\widehat {BIE} = \widehat {BIH}\) (cmt)

\( \Rightarrow \Delta BIE = \Delta BIH \,(g.c.g) \Rightarrow IE = IH\) (hai cạnh tương ứng) \((3)\)

Xét tam giác \(CID\) và tam giác \(CIH\) có:

\(\widehat {{C_1}} = \widehat {{C_2}}\) (cmt)

\(CI\) là cạnh chung

\(\widehat {CID} = \widehat {HIC}\) (cmt)

\( \Rightarrow \Delta CID = \Delta CIH \,(g.c.g) \Rightarrow ID = IH\) (hai cạnh tương ứng) \((4)\)

Từ \((3)\) và \((4)\) suy ra \(ID = IE = 2cm\)

Câu 27 Trắc nghiệm

Cho hai đoạn thẳng \(AB,CD\) song song với nhau. Hai đoạn thẳng này chắn giữa hai đường thẳng song song \(AC,BD\). Chọn câu đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Kẻ đoạn thẳng \(AD\)

Vì \(AB//CD\) (gt) nên \(\widehat {{A_1}} = \widehat {{D_1}}\) (hai góc so le trong)

Vì \(AC//BD\) (gt) nên \(\widehat {{A_2}} = \widehat {{D_2}}\) (hai góc so le trong)

Xét tam giác \(ABD\) và tam giác \(DCA\) có:

\(\widehat {{A_1}} = \widehat {{D_1}}\) (cmt)

\(AD\) là cạnh chung

\(\widehat {{A_2}} = \widehat {{D_2}}\) (cmt)

\( \Rightarrow \Delta ABD = \Delta DCA\,(g.c.g) \Rightarrow AB = CD\) (hai cạnh tương ứng); \(AC = BD\) (hai cạnh tương ứng)

Câu 28 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A.\) Tia phân giác của góc \(ABC\) cắt \(AC\) tại \(D,\) lấy \(E\) trên cạnh \(BC\) sao cho \(BE = AB.\)

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét \(\Delta ABD\) và \(\Delta EBD\) có:

\(BA = BE\) (gt)

\(\widehat {{B_1}} = \widehat {{B_2}}\) (vì \(BD\) là tia phân giác \(\widehat {ABC}\))

\(BD\) cạnh chung

\( \Rightarrow \Delta ABD{\rm{ }} = \Delta EBD\,(c.g.c)\)

Câu 29 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A.\) Tia phân giác của góc \(ABC\) cắt \(AC\) tại \(D,\) lấy \(E\) trên cạnh \(BC\) sao cho \(BE = AB.\)

Trên tia đối của tia \(DE\) lấy điểm \(M\) sao cho \(DM = DC\). So sánh \(EC\) và \(AM\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Sử dụng kết quả câu trước \(\Delta ABD{\rm{ }} = \Delta EBD\) suy ra \(DE = DA\) (hai cạnh tương ứng). Nối \(AM.\)

Xét \(\Delta ADM\) và \(\Delta EDC\) có:

\(DA = DE\) (chứng minh trên)

\(\widehat {ADM} = \widehat {EDC}\) (hai góc đối đỉnh)

\(DM = DC\,(gt)\)

\( \Rightarrow \Delta ADM = \Delta EDC\,(c.g.c)\)

\( \Rightarrow AM = EC\) (hai cạnh tương ứng bằng nhau).

Câu 30 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A.\) Tia phân giác của góc \(ABC\) cắt \(AC\) tại \(D,\) lấy \(E\) trên cạnh \(BC\) sao cho \(BE = AB.\)

Trên tia đối của tia \(DE\) lấy điểm \(M\) sao cho \(DM = DC\). Nối \(AE,\) so sánh số đo \(\widehat {AEC};\widehat {EAM}\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Sử dụng kết quả câu trước \(\Delta ADM = \Delta EDC\) suy ra \(AD = ED;\,AM = EC\) (các cạnh tương ứng).

Ta có: \(AD = ED\,\,\,\,(1)\)

           \(DC = DM\,\,\,(2)\)

Cộng (1) và (2) theo vế với vế ta được: \(AD + DC = ED + DM\) hay \(AC = EM\).

Xét \(\Delta AEC\) và \(\Delta EAM\) có:

\(AE\) cạnh chung

\(EC = AM\,(cmt)\)

\(AC = EM\,(cmt)\)

\( \Rightarrow \Delta AEC = \Delta EAM\,(c.c.c)\)

\( \Rightarrow \widehat {AEC} = \widehat {EAM}\) (hai góc tương ứng).

Câu 31 Trắc nghiệm

Cho điểm \(A\) nằm trong góc nhọn \(xOy.\) Vẽ \(AH\) vuông góc với \(Ox,\) trên tia đối của tia \(HA\) lấy điểm \(B\) sao cho \(HB = HA.\) Vẽ \(AK\) vuông góc với \(Oy,\) trên tia đổi của tia \(KA\) lấy điểm \(C\) sao cho \(KC = KA.\)

So sánh \(OB;OC\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét \(\Delta OAH\) và \(\Delta OBH\) có:

\(OH\) cạnh chung

\(\widehat {OHA} = \widehat {OHB} = {90^o}\)

\(HA = HB\,(gt)\)

\( \Rightarrow \Delta OAH = \Delta OBH\,(c.g.c)\)

\( \Rightarrow OA = OB\) (hai cạnh tương ứng)     (1)

Xét \(\Delta OAK\) và \(\Delta OCK\) có:

\(OK\) cạnh chung

\(\widehat {OKA} = \widehat {OKC} = {90^o}\)

\(KA = KC\,(gt)\)

\( \Rightarrow \Delta OAK = \Delta OCK\,(c.g.c)\)

\( \Rightarrow OA = OC\) (hai cạnh tương ứng)     (2)

Từ (1) và (2) suy ra \(OA = OB = OC.\)

Câu 32 Trắc nghiệm

Cho điểm \(A\) nằm trong góc nhọn \(xOy.\) Vẽ \(AH\) vuông góc với \(Ox,\) trên tia đối của tia \(HA\) lấy điểm \(B\) sao cho \(HB = HA.\) Vẽ \(AK\) vuông góc với \(Oy,\) trên tia đổi của tia \(KA\) lấy điểm \(C\) sao cho \(KC = KA.\)

Biết \(\widehat {xOy} = \alpha .\) Tính \(\widehat {BOC}.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Sử dụng kết quả câu trước ta có: \(\Delta OAH = \Delta OBH\), \(\Delta OAK = \Delta OCK\).

Vì \(\Delta OAH = \Delta OBH\) suy ra \(\widehat {BOH} = \widehat {AOH}\) (hai góc tương ứng).

Vì \(\Delta OAK = \Delta OCK\) suy ra \(\widehat {AOK} = \widehat {COK}\) (hai góc tương ứng).

Ta có \(\widehat {BOC} = \widehat {BOA} + \widehat {AOC}\)

\( \Rightarrow \widehat {BOC} = \widehat {BOH} + \widehat {AOH} + \widehat {AOK} + \widehat {COK}\)

\( \Rightarrow \widehat {BOC} = 2\widehat {AOH} + 2\widehat {AOK}\) (vì \(\widehat {BOH} = \widehat {AOH}\) và \(\widehat {AOK} = \widehat {COK}\))

\( \Rightarrow \widehat {BOC} = 2\left( {\widehat {AOH} + \widehat {AOK}} \right) = 2\widehat {xOy} = 2\alpha .\)