Câu hỏi:
1 năm trước

Cho tam giác \(ABC\)  vuông tại \(A\)  có \(AB = AC.\) Qua \(A\) kẻ đường thẳng \(xy\)  sao cho \(B,C\) nằm cùng phía với \(xy.\) Kẻ \(BD\)  và \(CE\)  vuông góc với \(xy.\) Chọn câu đúng.

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có: \({\widehat A_1} + {\widehat A_2} = {90^0}\,\,\,\left( {do\,\,\,\widehat {BAC} = {{90}^0}} \right)\)

Mà \({\widehat A_1} + {\widehat B_2} = {90^0}\) (vì tam giác \(ABD\)  vuông tại \(D.\))

\( \Rightarrow {\widehat B_2} = {\widehat A_2}\)  (cùng phụ với \({\widehat A_1}\)).

Lại có \({\widehat A_2} + {\widehat C_1} = {90^0}\) (vì tam giác \(ACE\)  vuông tại \(E\) )

\( \Rightarrow {\widehat A_1} = {\widehat C_1}\) (cùng phụ với \({\widehat A_2}\)).

Xét hai tam giác \(BDA\)  và \(AEC\)  có:

\(\widehat {{B_2}} = \widehat {{A_2}}\); \(AB = AC\) (gt) và\(\widehat {{A_1}} = \widehat {{C_1}}\) (cmt)

\( \Rightarrow \Delta BA{\rm{D}} = \Delta ACE\) (g.c.g)

\( \Rightarrow \) \(BD = AE\) (hai cạnh tương ứng), \(CE = AD\) (hai cạnh tương ứng).

Do đó \(DE = AD + AE = CE + BD.\)

Hướng dẫn giải:

+ Dựa vào hệ quả của trường hợp bằng nhau thứ ba của tam giác để chứng minh các cặp tam giác bằng nhau

+ Từ các cặp cạnh tương ứng bằng nhau ta lập luận để suy ra mối quan hệ đúng.

Câu hỏi khác