Cho tam giác \(ABC\) vuông tại \(A.\) Tia phân giác của góc \(ABC\) cắt \(AC\) tại \(D,\) lấy \(E\) trên cạnh \(BC\) sao cho \(BE = AB.\)
Trên tia đối của tia \(DE\) lấy điểm \(M\) sao cho \(DM = DC\). So sánh \(EC\) và \(AM\).
Trả lời bởi giáo viên
Sử dụng kết quả câu trước \(\Delta ABD{\rm{ }} = \Delta EBD\) suy ra \(DE = DA\) (hai cạnh tương ứng). Nối \(AM.\)
Xét \(\Delta ADM\) và \(\Delta EDC\) có:
\(DA = DE\) (chứng minh trên)
\(\widehat {ADM} = \widehat {EDC}\) (hai góc đối đỉnh)
\(DM = DC\,(gt)\)
\( \Rightarrow \Delta ADM = \Delta EDC\,(c.g.c)\)
\( \Rightarrow AM = EC\) (hai cạnh tương ứng bằng nhau).
Hướng dẫn giải:
- Sử dụng kết quả câu trước \(\Delta ABD{\rm{ }} = \Delta EBD\) suy ra \(DE = DA\) (hai cạnh tương ứng).
- Sử dụng trường hợp bằng nhau thứ hai của tam giác để chứng minh \(\Delta ADM = \Delta EDC\) từ đó suy ra điều phải chứng minh.