I. Sơ đồ tư duy các số đặc trưng đo độ phân tán

II. Khoảng biến thiên. Khoảng tứ phân vị
1. Định nghĩa
Trong một mẫu số liệu, khoảng biến thiên là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đó.
Ta có thể tính khoảng biến thiên R của mẫu số liệu theo công thức sau: R=xmax−xmin, trong đó xmax là giá trị lớn nhất, xmin là giá trị nhỏ nhất của mẫu số liệu đó.
- Giả sử Q1,Q2,Q3 là tứ phân vị của mẫu số liệu. Ta gọi hiệu ΔQ=Q3−Q1 là khoảng tứ phân vị, của mẫu số liệu đó.
Chú ý: Một số tài liệu gọi khoảng biến thiên là biên độ và khoảng tứ phân vị là độ trải giữa.
2. Ý nghĩa của khoảng biến thiên và khoảng tứ phân vị
- Khoảng biến thiên đặc trưng cho độ phân tán của toàn bộ mẫu số liệu.
- Khoảng tứ phân vị đặc trưng cho độ phân tán của một nửa các số liệu, có giá trị thuộc đoạn từ Q1 đển Q3 trong mẫu.
- Khoảng tứ phân vị không bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu.
III. Phương sai
Cho mẫu số liệu thống kê có n giá trị x1,x2,…,xn và số trung bình cộng là ˉx.
Ta gọi số s2=(x1−ˉx)2+(x2−ˉx)2+…+(xn−ˉx)2n là phương sai của mẫu số liệu trên.
Chú ý: Có thể biến đổi công thức tính phương sai ở trên thành:
s2=1n(x21+x22+…+x2n)−ˉx2.
Trong thống kê, người ta cũng quan tâm đến phương sai hiệu chỉnh, kí hiệu là ˆs2, được tính bởi công thức:
ˆs2=1n−1[(x1−ˉx)2+(x2−ˉx)2+…+(xn−ˉx)2]
Ý nghĩa: Phương sai là số đặc trưng đo mức độ phân tán của mẫu số liệu. Mẫu số liệu có phương sai nhỏ hơn thì mức độ phân tán của các số liệu trong mẫu đó sẽ thấp hơn.
IV. Độ lệch chuẩn
Căn bậc hai của phương sai gọi là độ lệch chuẩn của mẫu số liệu thống kê: s=√s2
Ý nghĩa:
Khi hai mẫu số liệu thống kê có cùng đơn vị đo và có số trung bình cộng bằng nhau (hoặc xấp xỉ), mẫu số liệu có độ lệch chuẩn nhỏ hơn thì mức độ phân tán (so với số trung bình cộng) của các số liệu trong mẫu đó sẽ thấp hơn. Độ lệch chuẩn là số đặc trưng đo mức độ phân tán của mẫu số liệu thống kê có cùng đơn vị đo.