Các trường hợp bằng nhau của tam giác vuông

Sách kết nối tri thức với cuộc sống

Đổi lựa chọn

Câu 1 Trắc nghiệm

Cho tam giác \(ABC\) và tam giác \(NPM\)  có \(BC = PM;\,\widehat B = \widehat P = 90^\circ \). Cần thêm một điều kiện gì để tam giác \(ABC\) và tam giác \(NPM\) bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có tam giác \(ABC\) và tam giác \(NPM\)  có \(BC = PM;\,\widehat B = \widehat P = 90^\circ \) mà \(BC;PM\) là hai cạnh góc vuông của hai tam giác  \(ABC\) và  \(NPM\) nên để hai tam giác bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông thì ta cần thêm hai cạnh huyền bằng nhau là \(CA = MN.\)

Câu 2 Trắc nghiệm

Cho tam giác ABC và tam giác KHI có: \(\widehat A = \widehat K = 90^\circ ;\,AB = KH;\,BC = HI\) . Phát biểu nào trong các phát biểu sau là đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét tam giác ABC và tam giác KHI có:

\(\begin{array}{l}\widehat A = \widehat K = 90^\circ \\AB = KH\;\;\left( {gt} \right)\\BC = HI\;\;\;\left( {gt} \right)\end{array}\)

\( \Rightarrow \Delta ABC = \Delta KHI\) (cạnh huyền - cạnh góc vuông)

Câu 3 Trắc nghiệm

Cho tam giác $ABC$  và tam giác $MNP$  có \(\widehat A = \widehat M = {90^0},\,\widehat C = \widehat P\). Cần thêm một điều kiện gì để tam giác $ABC$  và tam giác $MNP$  bằng nhau theo trường hợp cạnh góc vuông – góc nhọn kề:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(\,\widehat C = \widehat P\), mà góc $C$  và góc $P$  là hai góc nhọn kề của hai tam giác $ABC$  và $MNP$

Do đó: để tam giác vuông $ABC$  và tam giác vuông $MNP$  bằng nhau theo trường hợp cạnh góc vuông – góc nhọn kề thì cần cặp cạnh góc vuông kề với hai góc nhọn \(\widehat C\) và \(\widehat P\) của hai tam giác này bằng nhau, tức là bổ sung thêm điều kiện \(AC = MP.\)

Câu 4 Trắc nghiệm

Cho tam giác DEF và tam giác HKG có \(\widehat D = \widehat H = 90^\circ \), \(\widehat E = \widehat K\), DE = HK.Biết \(\widehat F = {80^0}\). Số đo góc G là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét tam giác DEF và tam giác HKG có

\(\begin{array}{l}\widehat D = \widehat H = {90^0}\\\widehat E = \widehat K\;\;\left( {gt} \right)\\DE = HK\;\;\left( {gt} \right)\end{array}\)

\( \Rightarrow \Delta DEF = \Delta HKG\) (g.c.g).

\( \Rightarrow \widehat F = \widehat G = 80^\circ \) ( hai góc tương ứng)

Câu 5 Trắc nghiệm

Cho tam gác $ABC$ và tam giác $DEF$ có \(\widehat B = \widehat E = {90^0},\,AC = DF,\,\,\widehat A = \widehat F\). Phát biểu nào trong các phát biểu sau đây là đúng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét tam giác $ABC$ và tam giác $FED$ có:

+ \(\widehat B = \widehat E = {90^0}\).

+ \(AC = DF\;\;\left( {gt} \right)\)

+ \(\,\,\widehat A = \widehat F\;\;\left( {gt} \right)\)

\( \Rightarrow \Delta ABC = \Delta FED\) (cạnh huyền - góc nhọn)

Câu 6 Trắc nghiệm

Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Kẻ MH vuông góc với AB (H thuộc AB) và MK vuông góc với AC (K thuộc AC). Khẳng định nào sau đây không đúng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Xét \(\Delta AHM\) và \(\Delta AKM\) có:

   \(\widehat H = \widehat K = 90^\circ \;\;(gt)\)

   AM chung

  \(\widehat {HAM} = \widehat {KAM}\) (vì AM là tia phân giác góc A)

\( \Rightarrow \Delta AHM = \Delta AKM\) (cạnh huyền – góc nhọn),

\( \Rightarrow \)\(MH = MK;\,AH = AK\) (các cặp cạnh tương ứng) nên khẳng định A, B đúng

Xét \(\Delta BHM\) và \(\Delta CKM\) có:

\(\begin{array}{l}\widehat H = \widehat K = 90^\circ \;(gt)\\HM = KM\;(cmt)\end{array}\)

\(BM = MC\) (M là trung điểm của BC)

\( \Rightarrow \Delta BHM = \Delta CKM\) (cạnh huyền - cạnh góc vuông)

\( \Rightarrow \widehat B = \widehat C\) ( hai góc tương ứng) nên khẳng định D đúng

Câu 7 Trắc nghiệm

Cho tam giác \(ABC\) và tam giác $KHI$  có: \(\widehat A = \widehat K = 90^\circ ;\,AB = KH;\,BC = HI\) . Phát biểu nào trong các phát biểu sau là đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét tam giác $ABC$ và tam giác $KHI$ có:

\(\begin{array}{l}\widehat A = \widehat K = 90^\circ \\AB = KH\;\;\left( {gt} \right)\\BC = HI\;\;\;\left( {gt} \right)\end{array}\)

\( \Rightarrow \Delta ABC = \Delta KHI\) (cạnh huyền - cạnh góc vuông)

Câu 8 Trắc nghiệm

Cho góc nhọn xBy. Kẻ tia phân giác Bm của góc xBy. Trên tia Bm lấy điểm M bất kì. Kẻ MH vuông góc với Bx, MK vuông góc với By (H \( \in \) Bx, K \( \in \) By). Khẳng định sai là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì Bm là tia phân giác của góc xBy nên \(\widehat {HBM} = \widehat {KBM}\)

Xét tam giác vuông HBM và KBM, có:

BM chung

\(\widehat {HBM} = \widehat {KBM}\)

\( \Rightarrow \Delta HBM = \Delta KBM\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \)HB = KB; MH = MK ( 2 cạnh tương ứng) nên khẳng định A,B đúng

\(\widehat {BMH} = \widehat {BMK}\)( 2 góc tương ứng), mà tia MB nằm giữa MH và MK nên MA là tia phân giác của góc HMK nên khẳng định C đúng

Câu 9 Trắc nghiệm

Cho tam giác $ABC$  và tam giác $DEF$ có $AB = DE$ ,  \(\widehat B = \widehat E\) , \(\widehat A = \widehat D = 90^\circ \). Biết $AC = 9cm.$ Độ dài $DF$ là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Xét tam giác $ABC$  và tam giác $DEF$  có

\(AB = DE\;\;\left( {gt} \right);\,\widehat B = \widehat E\;\;\left( {gt} \right);\,\widehat A = \widehat D = {90^0}.\) 

\( \Rightarrow \Delta ABC = \Delta DEF\)( cạnh góc vuông - góc nhọn) .

\( \Rightarrow DF = AC = 9\,cm\) (hai cạnh tương ứng bằng nhau)

Câu 10 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB > AC} \right).\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D.\) Kẻ \(DH\) vuông góc với \(BC.\) Trên tia \(AC\) lấy \(E\) sao cho \(AE = AB.\) Đường thẳng vuông góc với \(AE\) tại \(E\) cắt tia \(DH\) tại \(K.\) Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét tam giác vuông \(BAD\) và \(BHD\) có

\(AD\) chung

\(\widehat {ABD} = \widehat {HBD}\) (tính chất tia phân giác)

Nên \(\Delta ABD = \Delta HBD\left( {ch - gn} \right)\) \( \Rightarrow BA = BH\) (hai cạnh tương ứng).

Câu 11 Trắc nghiệm

Cho tam giác $DEF$  và tam giác $HKI$ có \(\widehat D = \widehat H = 90^\circ \), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc \(I\)  là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét tam giác $DEF$  và tam giác $HKI$  có

\(\widehat D = \widehat H = {90^0};\,\widehat E = \widehat K\;\;\left( {gt} \right);\,DE = HK\;\;\left( {gt} \right)\)

\( \Rightarrow \Delta DEF = \Delta HKI\) (cạnh góc vuông - góc nhọn).

\( \Rightarrow \widehat F = \widehat I = 80^\circ \) ( hai góc tương ứng)

Câu 12 Trắc nghiệm

Cho tam giác ABC có \(\widehat B = 40^\circ ;\widehat C = 70^\circ \). Kẻ BD vuông góc với AC. Biết AD = 4 cm, tính độ dài cạnh AC.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét tam giác ABC, có \(\widehat A + \widehat {ABC} + \widehat C = 180^\circ \) ( tổng 3 góc trong tam giác bằng 180 độ)

\(\begin{array}{l} \Rightarrow \widehat A + 40^\circ  + 70^\circ  = 180^\circ \\ \Rightarrow \widehat A = 70^\circ \\ \Rightarrow \widehat A = \widehat C\end{array}\)

Trong \(\Delta \)ABD vuông tại D, có \(\widehat A + \widehat {ABD} = 90^\circ \)

Trong \(\Delta \)CBD vuông tại D, có: \(\widehat C + \widehat {CBD} = 90^\circ \)

\( \Rightarrow \widehat {ABD} = \widehat {CBD}\)

Xét \(\Delta \)ABD và \(\Delta \)CBD , ta có:

\(\widehat {ADB} = \widehat {CDB}( = 90^\circ )\)

BD chung

\(\widehat {ABD} = \widehat {CBD}\)

\( \Rightarrow \)\(\Delta \)ABD = \(\Delta \)CBD ( g.c.g)

\( \Rightarrow \) AD = CD ( 2 cạnh tương ứng)

Mà AD =  4cm

\( \Rightarrow \)CD = 4 cm

Ta có:

AC = AD + CD = 4 + 4 = 8 ( cm)

Câu 13 Trắc nghiệm

Cho hình vẽ sau. Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì tam giác \(ABC\) cân tại \(A\) (do \(AB = AC\) ) nên \(\widehat {ABC} = \widehat {ACB}\)  (tính chất) (1)

Lại có \(\widehat {ABC} + \widehat {ABD} = 180^\circ \) và \(\widehat {ACB} + \widehat {ACE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {ABD} = 180^\circ  - \widehat {ABC}\) ; \(\widehat {ACE} = 180^\circ  - \widehat {ACB}\)  (2)

Từ (1) và (2) suy ra \(\widehat {ABD} = \widehat {ACE}\)

Xét tam giác \(ABD\) và tam giác \(ACE\) có

\(AB = AC;\,\)\(\widehat {ABD} = \widehat {ACE}\,\left( {cmt} \right);\)\(BD = CE\,\)

Suy ra \(\Delta ABD = \Delta ACE\left( {c - g - c} \right)\) \( \Rightarrow \widehat {DAB} = \widehat {CAE}\) (hai góc tương ứng)

Xét tam giác \(AHB\) và \(AKC\) có

+ \(\widehat H = \widehat K = 90^\circ \)

+ \(AB = AC\)

+ \(\widehat {DAB} = \widehat {CAE}\,\left( {cmt} \right)\)

Suy ra \(\Delta AHB = \Delta AKC\,\left( {ch - gn} \right)\)

Câu 14 Trắc nghiệm

Cho tam giác\(ABC\)và tam giác \(NPM\)  có \(BC = PM;\,\widehat B = \widehat P = 90^\circ \). Cần thêm một điều kiện gì để tam giác \(ABC\)và tam giác \(NPM\)bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có tam giác\(ABC\)và tam giác \(NPM\)  có \(BC = PM;\,\widehat B = \widehat P = 90^\circ \) mà BC, PM là hai cạnh góc vuông của hai tam giác \(ABC\) và  \(NPM\) nên để hai tam giác bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông thì ta cần thêm hai cạnh huyền bằng nhau là \(CA = MN.\)

Câu 15 Trắc nghiệm

Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM\) là tia phân giác của góc \(A\). Khi đó, tam giác \(ABC\) là tam giác gì?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Tam giác \(ABC\) có \(AM\) vừa là đường trung tuyến vừa là đường phân giác nên \(\Delta BAC\) cân tại $A.$

Câu 16 Trắc nghiệm

Cho tam giác \(ABC\) vuông cân tại \(A\). Một đường thẳng \(d\) bất kì luôn đi qua \(A\). Kẻ \(BH\) và \(CK\) vuông góc với đường thẳng \(d.\) Khẳng định đúng là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(AB = AC\)  (tính chất)

Lại có \(\widehat {ABH} + \widehat {BAH} = 90^\circ \) (vì \(\Delta ABH\) vuông tại \(H\) ) và \(\widehat {CAH} + \widehat {BAH} = 90^\circ \)

Nên \(\widehat {ABH} = \widehat {CAK}\)  (cùng phụ với \(\widehat {BAH}\) )

\( \Rightarrow \Delta ABH = \Delta CAK\) (cạnh huyền-góc nhọn) nên \(BH = AK.\)( 2 cạnh tương ứng)

Câu 17 Trắc nghiệm

Cho tam giác \(ABC\) vuông cân tại \(A\). Một đường thẳng \(d\) bất kì luôn đi qua \(A\). Kẻ \(BH\) và \(CK\) vuông góc với đường thẳng \(d.\) Khi đó tổng \(B{H^2} + C{K^2}\) bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

 

Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(AB = AC\)  (tính chất)

Lại có \(\widehat {ABH} + \widehat {BAH} = 90^\circ \) (vì \(\Delta ABH\) vuông tại \(H\) ) và \(\widehat {CAH} + \widehat {BAH} = 90^\circ \)

Nên \(\widehat {ABH} = \widehat {CAK}\)  (cùng phụ với \(\widehat {BAH}\) )

\( \Rightarrow \Delta ABH = \Delta CAK\) (cạnh huyền-góc nhọn) suy ra \(BH = AK.\)

Do đó \(B{H^2} + C{K^2} = A{K^2} + C{K^2}\,\,\left( 1 \right)\)

Xét tam giác \(ACK\), theo định lý Pytago: \(A{K^2} + C{K^2} = A{C^2}\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(B{H^2} + C{K^2} = A{C^2}.\)

Câu 18 Trắc nghiệm

Cho tam giác ABC. Từ A vẽ một cung tròn có bán kính bằng BC và từ C vẽ một cung tròn có bán kính bằng AB, hai cung tròn này cắt nhau tại D (D nằm khác phía của B đối với AC). Kẻ AH vuông góc với BC (H thuộc BC) và CK vuông góc với AD (K thuộc AD). Chọn câu sai

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Xét \(\Delta ABC\) và \(\Delta CDA\) có:

\(\begin{array}{l}AC\;\;chung\\AB = CD\;(cmt)\\BC = DA\;(cmt)\\ \Rightarrow \Delta ABC = \Delta CDA(c - c - c)\end{array}\)

\( \Rightarrow \widehat {ACB} = \widehat {CAD}\) (hai góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên AD // BC.

Ta có: \(\widehat {ACB} = \widehat {CAD}\;\;(cmt) \Rightarrow \widehat {ACH} = \widehat {CAK}\)

Xét \(\Delta AHC\) và \(\Delta CKA\) có:

\(\begin{array}{l}AC\;chung\\\widehat H = \widehat K = 90^\circ \;(gt)\\\widehat {ACH} = \widehat {CAK}\;\;\left( {cmt} \right)\end{array}\)

\( \Rightarrow \Delta AHC = \Delta CKA\) (cạnh huyền - góc nhọn)

\( \Rightarrow AH = CK\) ( hai cạnh tương ứng).

Do đó, A,B,D là các khẳng định đúng

Câu 19 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A\)\(\left( {AB > AC} \right).\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D.\) Kẻ \(DH\) vuông góc với \(BC.\) Trên tia \(AC\) lấy \(E\) sao cho \(AE = AB.\) Đường thẳng vuông góc với \(AE\) tại \(E\) cắt tia \(DH\) tại \(K.\)

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét hai tam giác vuông \(BAD\) và \(BHD\) có \(\widehat A = \widehat H = 90^\circ ;\,\widehat {ABD} = \widehat {HBD}\)  (vì \(BD\) là tia phân giác góc \(B\)) và cạnh \(BD\) chung

\( \Rightarrow \Delta ABD = \Delta HBD\left( {ch - gn} \right)\) \( \Rightarrow BA = BH\) (hai cạnh tương ứng).

Câu 20 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A\)\(\left( {AB > AC} \right).\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D.\) Kẻ \(DH\) vuông góc với \(BC.\) Trên tia \(AC\) lấy \(E\) sao cho \(AE = AB.\) Đường thẳng vuông góc với \(AE\) tại \(E\) cắt tia \(DH\) tại \(K.\)

Tính số đo góc \(DBK.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

+ Qua \(B\) kẻ đường thẳng vuông góc với \(EK\) cắt \(EK\) tại \(F\)

Khi đó ta có \(ABFE\) là hình vuông nên \(\widehat {ABF} = 90^\circ \) và \(AB = BF\)

Lại có \(AB = BH\) (ý trước) nên \(BH = BF\)

Xét hai tam giác vuông \(BHK\) và \(BFK\) có \(BH = BF\left( {cmt} \right);\,BK\) cạnh chung

Nên \(\Delta BHK = \Delta BFK\left( {ch - cgv} \right)\)\( \Rightarrow \widehat {FBK} = \widehat {HBK}\)

Lại có \(\widehat {ABD} = \widehat {DBH}\)  (do \(BD\) là phân giác góc \(\widehat {ABC}\) )

Nên \(\widehat {DBH} + \widehat {HBK} = \widehat {ABD} + \widehat {KBF} = \dfrac{{\widehat {DBH} + \widehat {HBK} + \widehat {ABD} + \widehat {KBF}}}{2}\)\(\dfrac{{\widehat {ABF}}}{2} = \dfrac{{90^\circ }}{2} = 45^\circ \)

Mà Vậy \(\widehat {DBK} = \widehat {DBH} + \widehat {HBK} = 45^\circ .\)