Trả lời bởi giáo viên

Đáp án đúng: d

Vì tam giác \(ABC\) cân tại \(A\) (do \(AB = AC\) ) nên \(\widehat {ABC} = \widehat {ACB}\)  (tính chất) (1)

Lại có \(\widehat {ABC} + \widehat {ABD} = 180^\circ \) và \(\widehat {ACB} + \widehat {ACE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {ABD} = 180^\circ  - \widehat {ABC}\) ; \(\widehat {ACE} = 180^\circ  - \widehat {ACB}\)  (2)

Từ (1) và (2) suy ra \(\widehat {ABD} = \widehat {ACE}\)

Xét tam giác \(ABD\) và tam giác \(ACE\) có

\(AB = AC;\,\)\(\widehat {ABD} = \widehat {ACE}\,\left( {cmt} \right);\)\(BD = CE\,\)

Suy ra \(\Delta ABD = \Delta ACE\left( {c - g - c} \right)\) \( \Rightarrow \widehat {DAB} = \widehat {CAE}\) (hai góc tương ứng)

Xét tam giác \(AHB\) và \(AKC\) có

+ \(\widehat H = \widehat K = 90^\circ \)

+ \(AB = AC\)

+ \(\widehat {DAB} = \widehat {CAE}\,\left( {cmt} \right)\)

Suy ra \(\Delta AHB = \Delta AKC\,\left( {ch - gn} \right)\)

Hướng dẫn giải:

+ Chứng minh hai tam giác \(BAD\) và \(CAE\) bằng nhau theo trường hợp cạnh- cạnh- cạnh để suy ra \(\widehat {DAB} = \widehat {CAE}\)

+ Từ đó chứng minh hai tam giác vuông \(AHB\) và \(AKC\) bằng nhau theo trường hợp cạnh huyền-góc nhọn.

Câu hỏi khác