Mệnh đề logic
Kỳ thi ĐGNL ĐHQG Hồ Chí Minh
Trong các mệnh đề sau, mệnh đề nào sai ?
Đáp án A : Nếu tứ giác là hình thang cân thì nó có hai đường chéo bằng nhau.
Đây là mệnh đề đúng.
Đáp án B : Nếu số tự nhiên \(n\) chia hết cho \(6\) và \(4\) thì nó chia hết cho \(24\).
Đây là mệnh đề sai, chẳng hạn số \(n = 12\).
Đáp án C : Nếu \(n\) là số nguyên tố lớn hơn \(3\) thì \({n^2} + 20\) là một hợp số.
Mệnh đề đúng vì nếu \(n\) nguyên tố lớn hơn \(3\) thì \(n\) chia cho \(3\) dư \(1\) hoặc \(2\).
+ TH1 : \(n = 3k + 1 \Rightarrow {n^2} + 20 = {\left( {3k + 1} \right)^2} + 20 \) \(= 9{k^2} + 6k + 21 \vdots 3\)
+ TH2 : \(n = 3k + 2 \Rightarrow {n^2} + 20 = {\left( {3k + 2} \right)^2} + 20 \) \(= 9{k^2} + 12k + 24 \vdots 3\)
Do đó ta luôn có \({n^2} + 20\) là hợp số.
Đáp án D : Nếu \(n\) là số nguyên tố lớn hơn \(3\) thì \({n^2} - 1\) chia hết cho \(24\).
Mệnh đề đúng vì nếu \(n\) nguyên tố lớn hơn \(3\) thì \(n\) chia cho \(3\) dư \(1\) hoặc \(2\).
+ TH1 : \(n = 3k + 1 \Rightarrow {n^2} - 1 = {\left( {3k + 1} \right)^2} - 1 \) \(= 9{k^2} + 6k = 3k\left( {3k + 2} \right) \vdots 3\)
+ TH2 : \(n = 3k + 2 \Rightarrow {n^2} - 1 = {\left( {3k + 2} \right)^2} - 1 \) \(= 9{k^2} + 12k + 3 = 3\left( {3{k^2} + 4k + 1} \right) \vdots 3\)
Do đó ta luôn có \({n^2} - 1 \vdots 3\)
Ngoài ra \(n\) nguyên tố lớn hơn \(3\) nên \(n\) lẻ, do đó :
\(n = 2m + 1 \Rightarrow {n^2} - 1 = {\left( {2m + 1} \right)^2} - 1 \) \(= 4{m^2} + 4m = 4m\left( {m + 1} \right) \vdots \left( {4.2} \right) = 8\)
Vậy \({n^2} - 1 \vdots \left( {3.8} \right) = 24\)
Vậy các mệnh đề A, C, D đều đúng.
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng?
Xét mệnh đề đảo của đáp án A: “Nếu số tự nhiên \(n\) chia hết cho \(3\) thì số nguyên \(n\) có tổng các chữ số bằng \(9\)”.
Mệnh đề này sai, chẳng hạn số 12 chia hết cho 3 nhưng có tổng các chữ số bằng 3 chứ không bằng 9.
Xét mệnh đề đảo của đáp án B: “Nếu \({x^2} > {y^2}\) thì \(x > y\)” sai vì \({x^2} > {y^2} \Leftrightarrow \left| x \right| > \left| y \right| \Leftrightarrow \left[ \begin{array}{l}x > y\\x < - y\end{array} \right.\).
Chẳng hạn \((-3)^2>2^2\) nhưng \(-3 < 2\)
Xét mệnh đề đảo của đáp án C: “Nếu \(t.x = t.y\) thì \(x = y\)” sai với \(t = 0 \Rightarrow x,\,y \in \mathbb{R}.\)
Chọn phương án trả lời đúng trong các phương án đã cho sau đây.
Mệnh đề "\(\exists x \in \mathbb{R}:{x^2} = 2\)" khẳng định rằng:
Mệnh đề "\(\exists x \in \mathbb{R}:{x^2} = 2\)" được phát biểu là: Tồn tại số thực \(x\) để cho \({x^2} = 2\), hay “Có ít nhất một số thực mà bình phương của nó bằng $2$”.
Mệnh đề \(P \Leftrightarrow Q\) chỉ đúng khi nào?
Mệnh đề \(P \Leftrightarrow Q\) chỉ đúng khi cả \(P\) và \(Q\) đều cùng đúng hoặc cùng sai.
Chọn mệnh đề đúng:
Lý thuyết tính đúng sai của mệnh đề tương đương:
Mệnh đề tương đương \(P \Leftrightarrow Q\) chỉ đúng khi \(P \Rightarrow Q\) và \(Q \Rightarrow P\) cùng đúng nên nếu \(P \Leftrightarrow Q\) đúng thì \(P \Rightarrow Q\) và \(Q \Rightarrow P\) cùng đúng.
Do đó A,B sai.
Đáp án C sai vì nếu \(P \Leftrightarrow Q\) sai thì có thể một trong hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) sai chứ không chắc cả hai mệnh đề đều sai.
Các phát biểu nào sau đây không thể là phát biểu của mệnh đề đúng \(P \Rightarrow Q\)
Mệnh đề đúng \(P \Rightarrow Q\) có thể được phát biểu là: nếu \(P\) thì \(Q\), $P$ kéo theo $Q$, $P$ là điều kiện đủ để có $Q$.
Cho các mệnh đề:
(1) “\(\sqrt 3 \) là số vô tỉ nếu và chỉ nếu \(3\) là số hữu tỉ”.
(2) “Tứ giác là hình hình hành nếu và chỉ nếu nó là hình thang có hai cạnh bên bằng nhau”.
(3) “Tứ giác là hình thoi nếu và chỉ nếu nó là hình bình hành có hai cạnh kề bằng nhau ”.
(4) “\(3 > 4\) khi và chỉ khi \(1 > 2\)”.
Số mệnh đề sai là:
Mệnh đề \(\left( 1 \right)\):
“\(\sqrt 3 \) là số vô tỉ nếu và chỉ nếu \(3\) là số hữu tỉ” đúng vì cả hai mệnh đề “\(\sqrt 3 \) là số vô tỉ” và “\(3\) là số hữu tỉ” đều đúng.
Mệnh đề $(1)$ đúng.
Mệnh đề (2): “Tứ giác là hình hình hành nếu và chỉ nếu nó là hình thang có hai cạnh bên bằng nhau” sai vì
Mệnh đề “Nếu tứ giác là hình thang có hai cạnh bên bằng nhau thì nó là hình hình hành” là sai, có thể xảy ra trường hợp nó là hình thang cân.
Mệnh đề $(2)$ sai.
Mệnh đề (3): “Tứ giác là hình thoi nếu và chỉ nếu nó là hình bình hành có hai cạnh kề bằng nhau” đúng vì cả hai mệnh đề kéo theo và mệnh đề đảo có được từ mệnh đề tương đương trên đều đúng.
Mệnh đề $(3)$ đúng.
Mệnh đề (4) “\(3 > 4\) khi và chỉ khi \(1 > 2\)” đúng vì cả hai mệnh đề “\(3 > 4\)” và “\(1 > 2\)” đều sai.
Mệnh đề $(4)$ đúng.
Vậy có \(3\) mệnh đề đúng và $1$ mệnh đề sai.
Cho mệnh đề : “Nếu một tứ giác là hình thang cân thì tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho ?
Mệnh đề “Nếu một tứ giác là hình thang cân thì tứ giác đó có hai đường chéo bằng nhau” có thể được phát biểu là:
+) “Điều kiện cần để tứ giác là hình thang cân là tứ giác đó có hai đường chéo bằng nhau” nên A đúng.
+) “Điều kiện đủ để tứ giác có hai đường chéo bằng nhau là tứ giác đó là hình thang cân” nên B đúng, C sai.
Trên một tấm bìa cac-tông có ghi 4 mệnh đề sau:
I. Trên tấm bìa này có đúng một mệnh đề sai.
II. Trên tấm bìa này có đúng hai mệnh đề sai.
III. Trên tấm bìa này có đúng ba mệnh đề sai.
IV. Trên tấm bìa này có đúng bốn mệnh đề sai.
Hỏi trên tấm bìa trên có bao nhiêu mệnh đề sai?
- Giả sử mệnh đề I đúng. Tức là trên tấm bìa chỉ có 1 mệnh đề I là đúng, 3 mệnh đề còn lại là sai. Tức là mệnh đề II sai. Hay nói cách khác, trên tấm bìa phải có 2 mệnh đề đúng. Điều này mâu thuẫn với điều giả sử. Nên mệnh đề I sai.
- Giả sử mệnh đề II đúng. Tức là trên tấm bài này có 2 mệnh đề đúng và 2 mệnh đề sai. Mà theo trên thì mệnh đề I sai. Nên hai mệnh còn lại là mệnh đề III, mệnh đề IV phải có 1 mệnh đề sai và 1 mệnh đề đúng.
Nếu mệnh đề III đúng thì mệnh đề II sai, nếu mệnh đề IV đúng thì mệnh đề II cũng sai nên mâu thuẫn với giả thiết. Hay mệnh đề II sai.
- Giả sử mệnh đề III đúng. Nghĩa là có 3 mệnh đề sai I, II, IV. Điều này thỏa mãn vì mệnh đề I, II đã sai (theo trên), mệnh đề IV sai vì mệnh đề III đã đúng nên IV phải là mệnh đề sai.
- Giả sử mệnh đề IV đúng thì điều này mâu thuẫn với chính nó vì mệnh đề IV nói có 4 mệnh đề sai nên IV phải là mệnh đề sai.
Vậy có 3 mệnh đề sai và 1 mệnh đề đúng.
Xác định tính đúng sai của mệnh đề sau và tìm phủ định của nó :
F: " \(\exists a \in \mathbb{R}\): \(a + 1 + \dfrac{1}{{a + 1}} \le 2\)"
Với $a=0$ thì \(a + 1 + \dfrac{1}{{a + 1}} =2\le 2\) nên mệnh đề F đúng.
Mệnh đề phủ định là \(\overline F :\) " \( \forall a \in \mathbb{R}\): \(a + 1 + \dfrac{1}{{a + 1}} > 2\)"