Bài toán tối ưu
Kỳ thi ĐGNL ĐHQG Hồ Chí Minh
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
- Theo định nghĩa thì \(x + y \ge 0\)là bất phương trình bậc nhất hai ẩn.
- Các bất phương trình còn lại là bất phương trình bậc hai.
Cho bất phương trình \(2x + 3y - 6 \le 0\,\,(1)\). Chọn khẳng định đúng trong các khẳng định sau
Trên mặt phẳng tọa độ, đường thẳng \(\left( d \right):2x + 3y - 6 = 0\,\,\)chia mặt phẳng thành hai nửa mặt phẳng.
Chọn điểm \(O\left( {0;0} \right)\) không thuộc đường thẳng đó. Ta thấy \(\left( {x;y} \right) = \left( {0;0} \right)\) là nghiệm của bất phương trình đã cho. Vậy miền nghiệm của bất phương trình là nửa mặt phẳng bờ \(\left( d \right)\) chứa điểm \(O\left( {0;0} \right)\) kể cả \(\left( d \right)\).
Vậy bất phương trình $\left( 1 \right)$ luôn có vô số nghiệm.
Đề mẫu ĐGNL 2019
Một bác nông dân cần trồng lúa và khoai trên diện tích đất gồm 6 ha, với lượng phân bón dữ trữ là 100kg và sử dụng tối đa 120 ngày công. Để trồng 1 ha lúa cần sử dụng 20kg phân bón, 10 ngày công với lợi nhuận là 30 triệu đồng, để trồng 1 ha khoai cần sử dụng 10 kg phân bón, 30 ngày công với lợi nhuận là 60 triệu đồng. Để đạt được lợi nhuận cao nhất, bác nông dân đã trồng \(x\left( {ha} \right)\) lúa và \(y\left( {ha} \right)\) khoai. Giá trị của \(x\) là:
Bước 1:
Gọi \(x,y\) (ha) lần lượt là diện tích đất cây trồng lúa và khoai \(\left( {x,y > 0} \right)\).
Tổng diện tích lúa và khoai được trồng là \(x + y\) (ha).
Tổng lượng phân bón cần dùng là \(20x + 10y\) (kg).
Tổng số ngày công cần dùng là \(10x + 30y\) (ngày).
Lợi nhuận thu được là \(S\left( {x;y} \right) = 30x + 60y\) (triệu đồng)
Từ giả thiết ta được hệ bất phương trình thể hiện miền nghiệm là:
\(\left\{ \begin{array}{l}x + y \le 6\\20x + 10y \le 100\\10x + 30y \le 120\\x \ge 0\\y \ge 0\end{array} \right.\)
Bước 2:
Ta biểu thị miền nghiệm của hệ bất phương trình bởi bằng đồ thị:
Miền nghiệm của hệ bất phương trình là ngũ giác \(OABCD\) vớ \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {3;3} \right),C\left( {4;2} \right),D\left( {5;0} \right)\).
Bước 3:
Khi đó \(S\left( {x;y} \right)\) đạt giá trị lớn nhất tại một trong các điểm O, A, B, C, D.
Ta có:
\(\begin{array}{l}S\left( O \right) = S\left( {0;0} \right) = 30.0 + 60.0 = 0\\S\left( A \right) = S\left( {0;4} \right) = 30.0 + 60.4 = 240\\S\left( B \right) = S\left( {3;3} \right) = 30.3 + 60.3 = 270\\S\left( C \right) = S\left( {4;2} \right) = 30.4 + 60.2 = 240\\S\left( D \right) = S\left( {5;0} \right) = 30.5 + 60.0 = 150\end{array}\)
Ta thấy \(S\left( {3;3} \right) = 270\) là giá trị lớn nhất khi \(x = y = 3\).
Vậy \(x = 3\).
Miền nghiệm của bất phương trình \( - x + 2 + 2\left( {y - 2} \right) < 2\left( {1 - x} \right)\) không chứa điểm:
Ta có: \( - x + 2 + 2\left( {y - 2} \right) < 2\left( {1 - x} \right)\)\( \Leftrightarrow - x + 2 + 2y - 4 < 2 - 2x\)\( \Leftrightarrow x + 2y < 4\)
Dễ thấy tại điểm \(\left( {4;\,2} \right)\) ta có: \(4 + 2.2 = 8 > 4\) nên điểm $(4;2)$ không thuộc miền nghiệm của bất phương trình.
Một công ty kinh chuẩn bị cho đợt khuyến mại nhằm mục đích thu hút khác hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên internet và truyền hình. Chi phí cho 1 phút quảng cáo trên internet là 800.000 đồng, trên sóng truyền hình là 4.000.000 đồng. Trang internet chỉ nhận phát các chương trình quảng cáo ngắn nhất là 5 phút. Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dì tối đa là 4 phút. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên internet. Công ty dự định chi tối đa 16.000.000 đồng cho quảng cáo. Công ty cần đặt thời lượng quảng cáo trên internet và truyền hình như thế nào để hiệu quả nhất?
Bước 1:
Gọi thời lượng công ty đặt quảng cáo trên internet là x (phút)\(\left( {x \ge 0} \right)\), trên truyền hình là y (phút)\(\left( {y \ge 0} \right)\).
Bước 2:
Chi phí cho việc quảng cáo là \(800000x + 4000000y\).
Vì mức chi phí tối đa là 16.000.000 đồng nên ta có bất phương trình:
\(\begin{array}{l}800000x + 4000000y \le 16000000\\ \Leftrightarrow x + 5y - 20 \le 0\end{array}\)
Do các điều kiện của internet và truyền hình nên ta có: \(x \ge 5,y \le 4\).
Hiệu quả chung của quảng cáo là \(x + 6y\).
Bước 3:
Bài toán trở thành: Xác định \(x,y\) sao cho \(M\left( {x;y} \right) = x + 6y\) đạt giá trị lớn nhất.
Với điều kiện \(\left\{ \begin{array}{l}x + 5y - 20 \le 0\\x \ge 5\\y \ge 0\\y \le 4\end{array} \right.\left( * \right)\)
Bước 4:
Xác định miền nghiệm của hệ (*):
Trong mặt phẳng tọa độ vẽ các đường thẳng \(\left( d \right):x + 5y - 20 = 0;\left( {d'} \right):x = 5;\)\(\left( {d''} \right):y = 4\).
Khi đó miền nghiệm của hệ (*) là phần mặt phẳng (tam giác) bị tô màu trên hình vẽ
Bước 5:
\(M\left( {x;y} \right) = x + 6y\) đạt giá trị lớn nhất tại một trong các điểm \(\left( {5;3} \right),\left( {5;0} \right),\left( {20;0} \right)\).
Ta có: \(M\left( {5;3} \right) = 23;M\left( {5;0} \right) = 5;\)\(M\left( {20;0} \right) = 20\).
Vậy nếu đặt thời lượng quảng cáo trên internet là 5 phút và trên truyền hình là 3 phút thì sẽ đạt hiệu quả nhất.
Cho bất phương trình\( - 2x + \sqrt 3 y + \sqrt 2 \le 0\) có tập nghiệm là \(S\). Khẳng định nào sau đây là khẳng định đúng?
Ta thấy \(\left( {\dfrac{{\sqrt 2 }}{2};0} \right) \in S\) vì \( - 2.\dfrac{{\sqrt 2 }}{2} + \sqrt 3 .0 + \sqrt 2 = 0\) nên B đúng.
Ngoài ra khi ta thay tọa độ các điểm ở đáp án A, C, D ta thấy \(\left( {1;1} \right) \notin S\), \(\left( {1; - 2} \right) \in S\) và \(\left( {1;0} \right) \in S\) nên A, C, D đều sai
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình$\left\{ {\begin{array}{*{20}{c}}{2x + 3y - 1 > 0}\\{5x - y + 4 < 0}\end{array}} \right.$?
Thay lần lượt tọa độ các điểm vào hệ bất phương trình ta thấy chỉ có điểm $\left( {0;0} \right)$ không thỏa mãn hệ.
Người ta dùng \(100\,{\rm{m}}\) rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh để có thể rào được?
Đặt cạnh của hình chữ nhật lần lượt là \(x\), \(y\)(\(x\), \(y > 0\); \(y\) là cạnh của bức tường).
Ta có: \(2x + y = 100\).\(\left( 1 \right)\).
Diện tích hình chữ nhật là \(S = xy = 2.x.\dfrac{y}{2}\mathop \le \limits^{Cosi} 2.{\left( {\dfrac{{x + \dfrac{y}{2}}}{2}} \right)^2} = \dfrac{1}{8}{\left( {2x + y} \right)^2} = \dfrac{1}{8}{\left( {100} \right)^2} = 1250\).
Vậy \({S_{\max }} = 1250\,{{\rm{m}}^{\rm{2}}}\). Đạt được khi \(x = \dfrac{y}{2} \Leftrightarrow y = 2x \Rightarrow x = 25\,{\rm{m}}\); \(y = 50\,{\rm{m}}\).
Một gia đình cần ít nhất \(900\) đơn vị protein và \(400\) đơn vị lipit trong thức ăn mỗi ngày. Mỗi kiogam thịt bò chứa \(800\) đơn vị protein và \(200\)đơn vị lipit. Mỗi kilogam thịt lợn chứa \(600\) đơn vị protein và \(400\) đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất \(1,6\) kg thịt bò và \(1,1\) kg thịt lợn. Giá tiền một kg thịt bò là \(160\) nghìn đồng, một kg thịt lợn là \(110\) nghìn đồng. Gọi \(\,x\),\(y\) lần lượt là số kg thịt bò và thịt lợn mà gia đình đó cần mua. Tìm \(\,x\),\(y\) để tổng số tiền họ phải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn?
Theo bài ra ta có số tiền gia đình cần trả là \(160.x + 110.y\) với \(\,x\),\(y\) thỏa mãn: \(\left\{ \begin{array}{l}0 \le x \le 1,6\\0 \le y \le 1,1\end{array} \right.\).
Số đơn vị protein gia đình có là \(0,8.x + 0,6.y \ge 0,9\)\( \Leftrightarrow 8x + 6y \ge 9\)\(\left( {{d_1}} \right)\).
Số đơn vị lipit gia đình có là\(0,2.x + 0,4.y \ge 0,4 \Leftrightarrow \,x + 2y \ge 2\) \(\left( {{d_2}} \right)\).
Bài toán trở thành: Tìm \(x,y\) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}0 \le x \le 1,6\\0 \le y \le 1,1\\8x + 6y \ge 9\\x + 2y \ge 2\end{array} \right.\) sao cho \(T = 160.x + 110.y\) nhỏ nhất.
Vẽ hệ trục tọa độ ta tìm được tọa độ các điểm \(A\left( {1,6;\,1,1} \right)\); \(B\left( {1,6;\,0,2} \right)\); \(C\left( {0,6;\,0,7} \right)\); \(D\left( {0,3;\,1,1} \right)\).
Nhận xét: \(T\left( A \right) = 377\) nghìn, \(T\left( B \right) = 278\) nghìn, \(T\left( C \right) = 173\) nghìn, \(T\left( D \right) = 169\) nghìn.
Ta thấy, T(D) nhỏ nhất nên x=0,3, y=1,1.
Vậy tổng số tiền họ phải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn thì \(x = 0,3\) và \(y = 1,1\).
Miền nghiệm (phần không bị gạch) của bất phương trình \(3x - 2y > - 6\) là
Trước hết, ta vẽ đường thẳng \(\left( d \right):3x - 2y = - 6.\)
Ta thấy \(\left( {0\,\,;\,\,0} \right)\) là nghiệm của bất phương trình đã cho. Vậy miền nghiệm cần tìm là nửa mặt phẳng bờ \(\left( d \right)\) chứa điểm \(\left( {0\,\,;\,\,0} \right).\)
Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x - \dfrac{3}{2}y \ge 1\\4x - 3y \le 2\end{array} \right.\) có tập nghiệm \(S\). Khẳng định nào sau đây là khẳng định đúng?
Dễ thấy \(x = - \dfrac{1}{4};y = - 1\) thỏa mãn cả hai bất phương trình nên \(\left( { - \dfrac{1}{4}; - 1} \right) \in S\), do đó A sai.
Ta sẽ biểu diễn tập nghiệm của bất phương trình trên mặt phẳng tọa độ như sau:
Trước hết, ta vẽ hai đường thẳng:
\(\left( {{d_1}} \right):2x - \dfrac{3}{2}y = 1\)
\(\left( {{d_2}} \right):4x - 3y = 2\)
Thử trực tiếp ta thấy \(\left( {0\,\,;\,\,0} \right)\) là nghiệm của bất phương trình (2) vì 4.0-3.0 < 2 (đúng)
Nhưng (0;0) không phải là nghiệm của bất phương trình (1) vì \(2.0 - \dfrac{3}{2}.0 < 1\).
Sau khi gạch bỏ các miền không thích hợp, tập hợp nghiệm của bất phương trình chính là các điểm thuộc đường thẳng \(\left( d \right):4x - 3y = 2.\)
Cho hệ \(\left\{ \begin{array}{l}2x + 3y < 5\,\,\,(1)\\x + \dfrac{3}{2}y < 5\,\,\,(2)\end{array} \right.\). Gọi \({S_1}\) là tập nghiệm của bất phương trình (1), \({S_2}\) là tập nghiệm của bất phương trình (2) và \(S\) là tập nghiệm của hệ thì
Trước hết, ta vẽ hai đường thẳng:
\(\left( {{d_1}} \right):2x + 3y = 5\)
\(\left( {{d_2}} \right):x + \dfrac{3}{2}y = 5\)
Ta thấy \(\left( {0\,\,;\,\,0} \right)\) là nghiệm của cả hai bất phương trình. Điều đó có nghĩa gốc tọa độ thuộc cả hai miền nghiệm của hai bất phương trình. Say khi gạch bỏ các miền không thích hợp, miền không bị gạch là miền nghiệm của hệ.
Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D ?
Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng \(\left( {{d_1}} \right):y = 0\) và đường thẳng \(\left( {{d_2}} \right):3x + 2y = 6.\)
Miền nghiệm gồm phần \(y\) nhận giá trị dương.
Lại có \(\left( {0\,\,;\,\,0} \right)\) thỏa mãn bất phương trình \(3x + 2y < 6.\)
Miền tam giác \(ABC\) kể cả ba cạnh sau đây là miền nghiệm của hệ bất phương trình nào trong bốn bệ A, B, C, D ?
Dựa vào hình vẽ, ta thấy:
Đường thẳng \(\left( {{d_1}} \right)\) là trục tung Oy nên có phương trình x=0.
Đường thẳng \(\left( {{d_2}} \right)\) đi qua hai điểm (0;2) và \((\dfrac{5}{2};0)\) nên có phương trình \(\frac{x}{{\frac{5}{2}}} + \frac{y}{2} = 1 \Leftrightarrow \frac{{2x}}{5} + \frac{y}{2} = 1 \Leftrightarrow 4x + 5y = 10\)
Đường thẳng \(\left( {{d_3}} \right)\) đi qua các điểm (2;0) và \((0;-\dfrac{5}{2})\) nên có phương trình \(\frac{x}{2} + \frac{y}{{ - \frac{5}{2}}} = 1 \Leftrightarrow \frac{x}{2} - \frac{{2y}}{5} = 1 \Leftrightarrow 5x - 4y = 10\)
Miền nghiệm gần phần mặt phẳng nhận giá trị \(x\) dương (kể cả bờ \(\left( {{d_1}} \right)\)).
Lại có \(\left( {0\,\,;\,\,0} \right)\) là nghiệm của cả hai bất phương trình \(4x + 5y \le 10\) và \(5x - 4y \le 10.\)
Vậy miền tam giác ABC biểu diễn nghiệm của hệ câu C.
Một hình chữ nhật \(ABCD\) có \(AB = 8\) và \(AD = 6\). Trên đoạn \(AB\) lấy điểm \(E\) thỏa \(BE = 2\) và trên \(CD\) lấy điểm \(G\) thỏa \(CG = 6\). Người ta cần tìm một điểm \(F\) trên đoạn \(BC\) sao cho \(ABCD\) được chia làm hai phần màu trắng và màu xám như hình vẽ. Và diện tích phần màu xám bé hơn ba lần diện tích phần màu trắng. Điều kiện cần và đủ của điểm \(F\) là
Gọi \(BF = x > 0\), ta có \({S_{BEF}} + {S_{GFC}}\) \( = \dfrac{1}{2}BE.BF + \dfrac{1}{2}CF.CG\) \( = x + 3\left( {6 - x} \right) = 18 - 2x\).
\({S_{ABCD}} = AB.AD\)\( = 48\). Theo yêu cầu bài toán: \({S_{BEF}} + {S_{GFC}} > \dfrac{1}{4}{S_{ABCD}} \Leftrightarrow \)\(18 - 2x > \dfrac{1}{4}.48\)
\( \Leftrightarrow 2x < 6\)\( \Leftrightarrow x < 3\).
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y \le 2\\3x + 5y \le 15\\x \ge 0\\y \ge 0\end{array} \right.\). Khẳng định nào sau đây là khẳng định sai ?
Trước hết, ta vẽ bốn đường thẳng:
\(\left( {{d_1}} \right):x - y = 2\)
\(\left( {{d_2}} \right):3x + 5y = 15\)
\(\left( {{d_3}} \right):x = 0\)
\(\left( {{d_4}} \right):y = 0\)
- Miền nghiệm là phần không bị gạch, kể cả biên nên A đúng.
- Đáp án B sai vì nếu \(m = 5\) ta vẽ đường thẳng \(x + y = 5\) sẽ không có giao điểm với miền nghiệm của hệ.
- Ta sẽ tìm GTLN, GTNN của biểu thức \(F\left( {x;y} \right) = x + y\) với \(\left( {x;y} \right)\) là nghiệm của hệ.
Ta có:
\(\begin{array}{l}F\left( {0;3} \right) = 0 + 3 = 3,F\left( {\dfrac{{25}}{8};\dfrac{9}{8}} \right) = \dfrac{{25}}{8} + \dfrac{9}{8} = \dfrac{{17}}{4},\\F\left( {2;0} \right) = 2 + 0 = 2,F\left( {0;0} \right) = 0 + 0 = 0\end{array}\)
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm \(I\) và \(II\). Mỗi sản phẩm \(I\) bán lãi \(500\) nghìn đồng, mỗi sản phẩm \(II\) bán lãi \(400\) nghìn đồng. Để sản xuất được một sản phẩm \(I\) thì Chiến phải làm việc trong \(3\) giờ, Bình phải làm việc trong \(1\) giờ. Để sản xuất được một sản phẩm \(II\) thì Chiến phải làm việc trong \(2\) giờ, Bình phải làm việc trong \(6\) giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá \(180\) giờ và Bình không thể làm việc quá \(220\) giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi \(x\), \(y\) lần lượt là số sản phẩm loại \(I\) và loại \(II\) được sản xuất ra. Điều kiện \(x\), \(y\) nguyên dương.
Ta có hệ bất phương trình sau: \(\left\{ \begin{array}{l}3x + 2y \le 180\\x + 6y \le 220\\x > 0\\y > 0\end{array} \right.\)
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là \(T = 0,5x + 0,4y\) (triệu đồng).
Ta thấy \(T\) đạt giá trị lớn nhất chỉ có thể tại các điểm \(A\), \(B\), \(C\). Vì \(C\) có tọa độ không nguyên nên loại.
Tại \(A\left( {60; 0} \right)\) thì \(T = 30\) triệu đồng.
Tại \(B\left( {40; 30} \right)\) thì \(T = 32\) triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là \(32\) triệu đồng.
Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa $24$ $g$ hương liệu, $9$ lít nước và $210$ $g$ đường để pha chế nước cam và nước táo.
+ Để pha chế $1$ lít nước cam cần $30$ $g$ đường, $1$ lít nước và $1$ $g$ hương liệu;
+ Để pha chế $1$ lít nước táo cần $10$ $g$ đường, $1$ lít nước và $4$ $g$ hương liệu.
Mỗi lít nước cam nhận được $60$ điểm thưởng, mỗi lít nước táo nhận được $80$ điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?
Giả sử $x,{\rm{ }}y$ lần lượt là số lít nước cam và số lít nước táo mà mỗi đội cần pha chế.
Suy ra $30x + 10y$ là số gam đường cần dùng;
$x + y$ là số lít nước cần dùng;
$x + 4y$ là số gam hương liệu cần dùng.
Theo giả thiết ta có $\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\30x + 10y \le 210\\x + y \le 9\\x + 4y \le 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + y \le 21\\x + y \le 9\\x + 4y \le 24\end{array} \right..$ \(\left( * \right)\)
Số điểm thưởng nhận được sẽ là $P\left( {x;y} \right) = 60x + 80y.$
Ta đi tìm giá trị nhỏ nhất của biểu thức \(P\) với \(x,{\rm{ }}y\) thỏa mãn \(\left( * \right)\).
Miền nghiệm là phần hình vẽ không tô màu ở hình trên, hay là ngũ giác \(OBCDE\) với \(O\left( {0;0} \right),B\left( {0;6} \right),C\left( {4;5} \right),D\left( {6;3} \right),E\left( {7;0} \right)\).
Biểu thức $P = 60x + 80y$ đạt GTLN tại \(\left( {x;y} \right)\) là tọa độ một trong các đỉnh của ngũ giác.
Thay lần lượt tọa độ các điểm \(O,B,C,D,E\) vào biểu thức \(P\left( {x;y} \right)\) ta được:
\(P\left( {0;0} \right) = 0;P\left( {0;6} \right) = 480;P\left( {4;5} \right) = 640;P\left( {6;3} \right) = 600;P\left( {7;0} \right) = 420\)
Giá trị nhỏ nhất của biết thức $F = y - x$ trên miền xác định bởi hệ $\left\{ {\begin{array}{*{20}{c}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right.$ là.
Biểu diễn miền nghiệm của hệ bất phương trình $\left\{ {\begin{array}{*{20}{c}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right.$ trên hệ trục tọa độ như dưới đây:
Nhận thấy biết thức $F = y - x$ chỉ đạt giá trị nhỏ nhất tại các điểm \(A,B\) hoặc \(C\).
Ta có: \(F\left( A \right) = 4 - 1 = 3;\,F\left( B \right) = 2;\,F\left( C \right) = 3 - 2 = 1\).
Vậy ${\rm{min }}F = 1$ khi $x = 2,y = 3$.
Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin \(A\) và \(B\) đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả \(A\) lẫn \(B\) và có thể tiếp nhận không quá 600 đơn vị vitamin \(A\)và không quá 500 đơn vị vitamin \(B\). Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin \(B\) không ít hơn một nửa số đơn vị vitamin \(A\) và không nhiều hơn ba lần số đơn vị vitamin \(A\). Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin \(A\) có giá 9 đồng và mỗi đơn vị vitamin \(B\) có giá 7,5 đồng.
Gọi \(x \ge 0,{\rm{ }}y \ge 0\) lần lượt là số đơn vị vitamin \(A\) và \(B\) để một người cần dùng trong một ngày.
Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị vitamin cả \(A\) lẫn \(B\) nên ta có: \(400 \le x + y \le 1000.\)
Hàng ngày, tiếp nhận không quá 600 đơn vị vitamin \(A\)và không quá 500 đơn vị vitamin \(B\)nên ta có: \(x \le 600,{\rm{ }}y \le 500.\)
Mỗi ngày một người sử dụng số đơn vị vitamin \(B\) không ít hơn một nửa số đơn vị vitamin \(A\) và không nhiều hơn ba lần số đơn vị vitamin \(A\)nên ta có: \(0,5x \le y \le 3x.\)
Số tiền cần dùng mỗi ngày là: \(T\left( {x,y} \right) = 9x + 7,5y.\)
Bài toán trở thành: Tìm \(x \ge 0,{\rm{ }}y \ge 0\) thỏa mãn hệ \(\left\{ \begin{array}{l}0 \le x \le 600,0 \le y \le 500\\400 \le x + y \le 1000\\0,5x \le y \le 3x\end{array} \right.\) để \(T\left( {x,y} \right) = 9x + 7,5y\) đạt giá trị nhỏ nhất.
Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ :
Miền nghiệm là lục giác \(ABCDEF\) với
\(\begin{array}{l}A\left( {\dfrac{{500}}{3};500} \right),B\left( {100;300} \right),C\left( {\dfrac{{800}}{3};\dfrac{{400}}{3}} \right)\\D\left( {600;300} \right),E\left( {600;400} \right),F\left( {500;500} \right)\end{array}\)
Thay tọa độ các điểm \(A,B,C,D,E,F\) vào biểu thức \(T\left( {x,y} \right) = 9x + 7,5y\) và tìm GTNN của nó ta được:
\(\begin{array}{l}T\left( {\dfrac{{500}}{3};500} \right) = 5250,T\left( {100;300} \right) = 3150,T\left( {\dfrac{{800}}{3};\dfrac{{400}}{3}} \right) = 3400\\T\left( {600;300} \right) = 7650,T\left( {600;400} \right) = 8400,T\left( {500;500} \right) = 8250\end{array}\)
Vậy \(\min T\left( {x;y} \right) = 3150\) khi \(x = 100;y = 300\)