Bài toán về điểm biểu diễn số phức trong mặt phẳng
Kỳ thi ĐGNL ĐHQG Hồ Chí Minh
Tập hợp các điểm trong mặt phẳng tọa độ biểu diễn số phức $z$ thoả mãn điều kiện \(2\left| {z - i} \right| = \left| {z - \overline z + 2i} \right|\) là hình gì?
Đặt
$\begin{array}{l}z = a + bi;a,b \in R;{i^2} = - 1\\ \Rightarrow z - i = a + \left( {b - 1} \right)i\\ \Rightarrow z - \overline z + 2i = \left( {2 + 2b} \right)i\\ \Rightarrow \left| {z - \overline z + 2i} \right| = 2\left| {z - i} \right| \Leftrightarrow \sqrt {{{\left( {2 + 2b} \right)}^2}} = 2\sqrt {{a^2} + {{\left( {b - 1} \right)}^2}} \\ \Leftrightarrow 4{a^2} - 16b = 0 \Leftrightarrow b = \dfrac{1}{4}{a^2}\end{array}$
Tập hợp các điểm biểu diễn số phức là đường parabol
Trên mặt phẳng tọa độ \(Oxy\), tìm tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left| {z - 2} \right| + \left| {z + 2} \right| = 10\).
Gọi \(z = x + yi\). Khi đó điểm $M\left( {x;y} \right)$ biểu diễn số phức$z$.
Ta có : \(\left| {z - 2} \right| + \left| {z + 2} \right| = 10 \Leftrightarrow \left| {x - 2 + yi} \right| + \left| {x + 2 + yi} \right| = 10 \)
$\Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2} + {y^2}} + \sqrt {{{\left( {x + 2} \right)}^2} + {y^2}} = 10$.
Đặt ${F_1}\left( { - 2;0} \right);{F_2}\left( {2;0} \right)$, khi đó : \(M{F_1} + M{F_2} = 10 > {F_1}{F_2}( = 4)\) nên tập hợp các điểm $M$ là elip $\left( E \right)$ có 2 tiêu điểm là ${F_1};{F_2}$ . Gọi $\left( E \right)$ có dạng : \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\)
Ta có \(\left\{ \begin{array}{l}M{F_1} + M{F_2} = 10 = 2a\\{F_1}{F_2} = 4 = 2c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 5\\c = 2\end{array} \right. \Rightarrow b = \sqrt {{5^2} - {2^2}} = \sqrt {21} \)
Vậy tập hợp các điểm $M$ là elip : \((E):\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{{21}} = 1\).
Cho các số phức \({z_1} = 3 - 2i,\) \({z_2} = 1 + 4i\) và \({z_3} = - 1 + i\) có biểu diễn hình học trong mặt phẳng tọa độ Oxy lần lượt là các điểm \(A,B,C\). Diện tích tam giác ABC bằng:
Ta có \({z_1} = 3 - 2i,\) \({z_2} = 1 + 4i\) và \({z_3} = - 1 + i\) có biểu diễn hình học trong mặt phẳng tọa độ Oxy lần lượt là các điểm \(A,B,C\) nên \(A\left( {3; - 2} \right);\,\,B\left( {1;4} \right);\,\,C\left( { - 1;1} \right).\)
Khi đó ta có:
$\begin{array}{l}
AB = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}} = 2\sqrt {10} \\
AC = \sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {1 + 2} \right)}^2}} = 5\\
BC = \sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {1 - 4} \right)}^2}} = \sqrt {13}
\end{array}$
Gọi \(p\) là nửa chu vi tam giác \(ABC\) ta có: \(p = \dfrac{{2\sqrt {10} + 5 + \sqrt {13} }}{2}.\)
Diện tích tam giác \(ABC\) là: \({S_{\Delta ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 9.\)
Cho số phức \(z = \left( {m + 3} \right) + \left( {{m^2} - m - 6} \right)i\) với \(m \in \mathbb{R}.\) Gọi \(\left( P \right)\) là tập hợp điểm biểu diễn số phức \(z\) trong mặt phẳng tọa độ. Diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và trục hoành bằng
Ta có \(z = \left( {m + 3} \right) + \left( {{m^2} - m - 6} \right)i\) được biểu diễn bởi điểm \(M\left( {x;y} \right)\) với \(\left\{ \begin{array}{l}x = m + 3\\y = {m^2} - m - 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m = x - 3\\y = {\left( {x - 3} \right)^2} - \left( {x - 3} \right) - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = x - 3\\y = {x^2} - 7x + 6\end{array} \right.\).
Vậy tập hợp điểm biểu diễn số phức \(z\) là parabol \(\left( P \right):y = {x^2} - 7x + 6\)
Hoành độ giao điểm của parabol \(\left( P \right)\) với trục hoành là \({x^2} - 7x + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 6\end{array} \right.\)
Diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và trục hoành bằng
\(S = \int\limits_1^6 {\left| {{x^2} - 7x + 6} \right|dx} = \left| {\int\limits_1^6 {\left( {{x^2} - 7x + 6} \right)dx} } \right| = \dfrac{{125}}{6}\)
Trên mặt phẳng tọa độ \(Oxy,\) gọi \(M\) là điểm biểu diễn hình học của số phức \(z = - 1 + 2i\) và \(\alpha \) là góc lượng giác có tia đầu \(Ox,\) tia cuối \(OM.\) Tính \(\tan 2\alpha .\)
Ta có: \(z = - 1 + 2i\) có điểm biểu diễn là \(M\left( { - 1;\,\,2} \right).\)
Ta có: \(\tan AOM = \dfrac{{AM}}{{OA}} = \dfrac{2}{1} = 2.\)
\( \Rightarrow \tan \alpha = - \tan AOM = - 2\) (hai góc bù nhau)
\( \Rightarrow \tan 2\alpha = \dfrac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} = \dfrac{{2.\left( { - 2} \right)}}{{1 - {{\left( { - 2} \right)}^2}}} = \dfrac{4}{3}\)
Cho hai số phức \({z_1},{z_2}\) thỏa mãn \(\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\). Gọi \(M,N\) lần lượt là các điểm biểu diễn của số phức \({z_1}\) và số phức \(i{z_2}\). Biết \(\widehat {MON} = {60^0}\). Tính \(T = \left| {z_1^2 + 9z_2^2} \right|\).
Ta chọn \({z_1} = 6\) có điểm biểu diễn là \(M\left( {6;0} \right)\).
Khi đó \(\widehat {MON} = {60^0}\) nên chọn \(N\left( {1;\sqrt 3 } \right)\) (hình vẽ) biểu diễn số phức \(i{z_2}\)
Suy ra điểm \(N'\left( {\sqrt 3 ; - 1} \right)\) biểu diễn số phức \({z_2}\) hay \({z_2} = \sqrt 3 - i\).
Khi đó \(T = \left| {z_1^2 + 9z_2^2} \right| = \left| {{6^2} + 9{{\left( {\sqrt 3 - i} \right)}^2}} \right| = 36\sqrt 3 \).
Cho hai số phức \({z_1} = 3 + i,\)\({z_2} = - 1 + 2i\). Trong mặt phẳng tọa độ, điểm biểu diễn cho số phức \(w = 2{z_1} - {z_2}\) là:
Ta có
\(\begin{array}{l}w = 2{z_1} - {z_2}\\\,\,\,\,\, = 2\left( {3 + i} \right) - \left( { - 1 + 2i} \right)\\\,\,\,\,\, = 6 + 2i + 1 - 2i = 7\end{array}\)
Vậy điểm biểu diễn của số phức \(w\) là \(M\left( {7;0} \right)\).
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \(z.\bar z = 1\) là:
Bước 1:
Gọi \(z = x + yi\left( {x;y \in R} \right)\) khi đó \(\overline z = x - yi\)
Bước 2:
Ta có: \(z.\overline z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1\) \( \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1\) \( \Leftrightarrow {x^2} + {y^2} = 1\)
Vậy tập hợp điểm biểu diễn số phức \(z\) là một đường tròn.