Cho \(A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\) . Chọn câu đúng.
\(\begin{array}{l}A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\\ = - 128.\left( { - 25} \right) - 128.89 + 128.89 + 128.\left( { - 125} \right)\\ = \left( { - 128.89 + 128.89} \right) - \left[ {128.\left( { - 25} \right) - 128.\left( { - 125} \right)} \right]\\ = 0 - 128.\left[ {\left( { - 25} \right) + 125} \right]\\ = - 128.100\\ = - 12800.\end{array}\)
Vậy giá trị của A là số chẵn, số âm có chữ số tận cùng là 0 và không chia hết cho 3.
Cho \({x_1}\) là số nguyên thỏa mãn \({\left( {x + 3} \right)^3}:3 - 1 = - 10\) . Chọn câu đúng.
\(\begin{array}{l}{\left( {x + 3} \right)^3}:3 - 1 = - 10\\{\left( {x + 3} \right)^3}:3= - 10 + 1\\{\left( {x + 3} \right)^3}:3= - 9\\{\left( {x + 3} \right)^3} = \left( { - 9} \right).3\\{\left( {x + 3} \right)^3} = - 27\\{\left( {x + 3} \right)^3} = {\left( { - 3} \right)^3}\\x + 3 = - 3\\x= - 3 - 3\\x= - 6.\end{array}\)
Vậy \({x_1} = - 6 < - 5\).
Cho \(x \in \mathbb{Z}\) và $-5$ là bội của \(x + 2\) thì giá trị của x bằng:
Ta có: -5 là bội của \(x + 2\) suy ra \(x + 2\) là ước của -5.
Mà \(U\left( { - 5} \right) = \left\{ { \pm 1;\, \pm 5} \right\}\) nên suy ra \(x + 2 \in \left\{ { \pm 1;\, \pm 5} \right\}\)
Xét bảng:
Vậy \(x \in \left\{ { - 1;\,3;\, - 3;\, - 7} \right\}\) .
Khi \(x = - 12\) giá trị của biểu thức \(\left( {x - 8} \right)\left( {x + 17} \right)\) là:
Thay \(x = - 12\) vào biểu thức ta được:
\(\begin{array}{l}\left( { - 12 - 8} \right)\left( { - 12 + 17} \right)\\ = \left( { - 20} \right).5\\ = - 100\end{array}\)
Cho x là số nguyên và \(x + 1\) là ước của 5 thì giá trị của x là:
Ta có: \(\left( {x + 1} \right) \in U\left( 5 \right) \Rightarrow \left( {x + 1} \right) \in \left\{ { - 5;\, - 1;\;\,1;\,\;5} \right\}.\)
Xét bảng:
Vậy \(x \in \left\{ {0;\,4;\, - 2;\, - 6} \right\}\) .
Chọn câu đúng nhất. Với \(a,b,c \in \mathbb{Z}\) :
+ Đáp án A: Xét \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\), với \(a,b,c,d \in \mathbb{Z}\)
\(\begin{array}{l}VT = a\left( {b - c} \right) - a\left( {b + d} \right)\\ = ab - ac - ab - ad\\ = \left( {ab - ab} \right) - \left( {ac + ad} \right)\\ = 0 - a\left( {c + d} \right)\\ = - a\left( {c + d} \right)\\ = VP\end{array}\)
Vậy \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\) với \(a,b,c,d \in \mathbb{Z}\) hay A đúng.
+ Đáp án B: Với \(a,\,b,\,c \in \mathbb{Z}\) xét \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)
\(\begin{array}{l}VT = a\left( {b + c} \right) - b\left( {a - c} \right)\\\,\,\,\,\,\,\, = ab + ac - ba + bc\\\,\,\,\,\,\,\, = \left( {ab - ba} \right) + \left( {ac + bc} \right)\\\,\,\,\,\,\,\, = 0 + c\left( {a + b} \right)\\\,\,\,\,\,\,\, = c\left( {a + b} \right)\\VP = \left( {a + b} \right)c\\ \Rightarrow VT = VP\end{array}\)
Vậy \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\) Hay B đúng.
Vậy cả A, B đều đúng
Tìm các số $x,{\rm{ }}y,{\rm{ }}z$ biết: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$.
Ta có: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$ nên
\(\begin{array}{l}\left( {x + y} \right) + \left( {y + z} \right) + \left( {z + x} \right) = 11 + 10 + \left( { - 3} \right)\\ \Leftrightarrow x + y + y + z + z + x = 21 + \left( { - 3} \right)\\ \Leftrightarrow \left( {x + x} \right) + \left( {y + y} \right) + \left( {z + z} \right) = 18\\ \Leftrightarrow 2x + 2y + 2z = 18\\ \Leftrightarrow 2\left( {x + y + z} \right) = 18\\ \Leftrightarrow x + y + z = 9\end{array}\)
Vậy \(x + y + z = 9.\)
+) $z = (x + y + z) - (x + y) = 9 - 11 = - 2$
+)$x = (x + y + z) - (y + z) = 9 - 10 = - 1$
+) $y = (x + y + z) - (x + z) = 9 - \left( { - 3} \right) = 12$
Vậy \(x = - 1;y = 12;z = - 2.\)
Có bao nhiêu số nguyên n thỏa mãn \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) ?
Ta có:
\(2n - 1 = 2n + 2 - 3 = \left( {2n + 2} \right) - 3 = 2\left( {n + 1} \right) - 3\)
Vì \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) nên \(\left[ {2\left( {n + 1} \right) - 3} \right] \vdots \left( {n + 1} \right)\) .
Mà \(2\left( {n + 1} \right) \vdots \left( {n + 1} \right)\) , suy ra \( - 3 \vdots \left( {n + 1} \right) \Rightarrow n + 1 \in U\left( { - 3} \right) = \left\{ { \pm 1;\, \pm 3} \right\}\) .
Ta có bảng sau:
Vậy \(n \in \left\{ { - 4;\, - 2;\,0;\,2} \right\}\)
Do đó có 4 số nguyên \(n\) thỏa mãn đề bài.
Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .
Vì \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) nên suy ra \(n + 3\) và \(n - 2\) là hai số trái dấu.
TH1: \(\left\{ \begin{array}{l}n + 3 > 0\\n - 2 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > 0 - 3\\n < 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > - 3\\n < 2\end{array} \right. \Leftrightarrow - 3 < n < 2 \Rightarrow n \in \left\{ { - 2;\, - 1;\;\,0;\;\,1} \right\}\) vì \(n \in Z.\)
TH2: \(\left\{ \begin{array}{l}n + 3 < 0\\n - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < 0 - 3\\n > 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < - 3\\n > 2\end{array} \right.\) suy ra không có giá trị nào của n thỏa mãn.
Vậy \(n \in \left\{ { - 2;\, - 1;\,\;0;\;\,1} \right\}\).
Tổng các số nguyên thỏa mãn là \(\left( { - 2} \right) + \left( { - 1} \right) + 0 + 1 = - 2.\)
Cho \(x,y \in \mathbb{Z}\) , tìm giá trị nhỏ nhất của biểu thức: \(A = \left| {x - 2} \right| + \left| {y + 5} \right| - 15\)
\(A = \left| {x - 2} \right| + \left| {y + 5} \right| - 10\)
Ta có: \(\left| {x - 2} \right| \ge 0\) với mọi \(x \in \mathbb{Z}\) và \(\left| {y + 5} \right| \ge 0\) với mọi \(y \in \mathbb{Z}\)
Suy ra \(\left| {x - 2} \right| + \left| {y + 5} \right| \ge 0\) với mọi \(x,y \in \mathbb{Z}\).
Suy ra \(\left| {x - 2} \right| + \left| {y + 5} \right| - 15 \ge - 15\,\) với mọi \(x,y \in \mathbb{Z}\) hay \(A \ge - 15\) với mọi \(x,y \in \mathbb{Z}\) .
Dấu bằng xảy ra khi \(\left| {x - 2} \right| = 0\) và \(\left| {y + 5} \right| = 0\) suy ra \(x = 2\) và \(y = - 5\) .
Vậy giá trị nhỏ nhất của của A bằng $ - 15$ khi \(x = 2\) và \(y = - 5\).
Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)
\(C = - {\left( {x - 5} \right)^2} + 10\)
Ta có: \({\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\)\( \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\)
Suy ra \(C \le 10\,\,\forall x \in \mathbb{Z}\) .
\(C = 10\) khi \({\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\)
Vậy giá trị lớn nhất của C là 10 khi \(x = 5\) .